Kyropoulos method

Last updated
Crystallization
Process-of-Crystallization-200px.png
Fundamentals
Concepts
Methods and technology

The Kyropoulos method, also known as the KY method or Kyropoulos technique, is a method of bulk crystal growth used to obtain single crystals.

Contents

The largest application of the Kyropoulos method is to grow large boules of single crystal sapphire used to produce substrates for the manufacture gallium nitride-based LEDs, and as a durable optical material. [1]

History

The method is named for Spyro Kyropoulos  [ Wikidata ], who proposed the technique in 1926 as a method to grow brittle alkali halide and alkali earth metal crystals for precision optics. [2] [3] [4] The method was a response to the limited boule sizes attainable by the Czochralski and Verneuil methods at the time. [5]

The Kyropoulos method was applied to sapphire crystal growth in the 1970s in the Soviet Union. [1]

The method

Single crystal sapphire boule grown by Kyropoulos method. Approximately 200 mm diameter and approximately 30 kg. (A second boule is visible in the background.) Sapphire boule, Kyropoulos method.jpg
Single crystal sapphire boule grown by Kyropoulos method. Approximately 200 mm diameter and approximately 30 kg. (A second boule is visible in the background.)

The feedstock is melted in a crucible. (For sapphire crystal growth, the feedstock is high-purity aluminum oxide—only a few parts per million of impurities—which is then heated above 2100 °C in a tungsten or molybdenum crucible.) A precisely oriented seed crystal is dipped into the molten material. The seed crystal is slowly pulled upwards and may be rotated simultaneously. By precisely controlling the temperature gradients, rate of pulling and rate of temperature decrease, it is possible to produce a large, single-crystal, roughly cylindrical ingot from the melt.

In contrast with the Czochralski method, the Kyropoulos technique crystallizes the entire feedstock volume into the boule. The size and aspect ratio of the crucible is close to that of the final crystal, and the crystal grows downward into the crucible, rather than being pulled up and out of the crucible as in the Czochralski method. The upward pulling of the seed is at a much slower rate than the downward growth of the crystal, and serves primarily to shape the meniscus of the solid-liquid interface via surface tension.

The growth rate is controlled by slowly decreasing the temperature of the furnace until the entire melt has solidified. Hanging the seed from a weight sensor can provide feedback to determine the growth rate, although precise measurements are complicated by the changing and imperfect shape of the crystal diameter, the unknown convex shape of the solid-liquid interface, and these features' interaction with buoyant forces and convection within the melt. [6]

The Kyropoulos method is characterized by smaller temperature gradients at the crystallization front than the Czochralski method. Like the Czochralski method, the crystal grows free of any external mechanical shaping forces, and thus has few lattice defects and low internal stress. [1] This process can be performed in an inert atmosphere, such as argon, or under high vacuum.

Advantages

The major advantages include technical simplicity of the process and possibility to grow crystals with large sizes (≥30 cm). [4] [7] The method also shows low dislocation density. [8]

Disadvantages

The most significant disadvantage of the method is an unstable speed of growth which happens due to heat exchange changes incurred by a growing boule size and which are difficult to predict. Due to this problem the crystals are typically grown at very slow speed in order to avoid unnecessary internal defects. [4] [7]

Application

Currently the method is used by several companies around the world to produce sapphire for the electronics and optics industries. [9]

Crystal sizes

The sizes of sapphire crystals grown by the Kyropoulos method have increased dramatically since the 1980s. In the mid-2000s sapphire crystals up to 30 kg were developed which could yield 150 mm diameter substrates. By 2017, the largest reported sapphire grown by the Kyropoulos method was 350 kg, and could produce 300 mm diameter substrates. [10]

Because of sapphire's anisotropic crystal structure, the orientation of the cylindrical axis of the boules grown by the Kyropoulos method is perpendicular to the orientation required for deposition of GaN on the LED substrates. [11] This means that cores must be drilled through the sides of the boule before being sliced into wafers. This means the as-grown boules have a significantly larger diameter than the resulting wafers.

As of 2017 the leading manufacturers of blue and white LEDs used 150 mm diameter sapphire substrates, with some manufacturers still using 100 mm, and 2 inch substrates.

See also

Related Research Articles

<span class="mw-page-title-main">Sapphire</span> Gem variety of corundum

Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide (α-Al2O3) with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name sapphire is derived via the Latin sapphirus from the Greek sappheiros (σάπφειρος), which referred to lapis lazuli. It is typically blue, but natural "fancy" sapphires also occur in yellow, purple, orange, and green colors; "parti sapphires" show two or more colors. Red corundum stones also occur, but are called rubies rather than sapphires. Pink-colored corundum may be classified either as ruby or sapphire depending on locale. Commonly, natural sapphires are cut and polished into gemstones and worn in jewelry. They also may be created synthetically in laboratories for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires – 9 on the Mohs scale (the third hardest mineral, after diamond at 10 and moissanite at 9.5) – sapphires are also used in some non-ornamental applications, such as infrared optical components, high-durability windows, wristwatch crystals and movement bearings, and very thin electronic wafers, which are used as the insulating substrates of special-purpose solid-state electronics such as integrated circuits and GaN-based blue LEDs. Sapphire is the birthstone for September and the gem of the 45th anniversary. A sapphire jubilee occurs after 65 years.

<span class="mw-page-title-main">Wafer (electronics)</span> Thin slice of semiconductor used for the fabrication of integrated circuits

In electronics, a wafer is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

<span class="mw-page-title-main">Zone melting</span> Purification process by moving a molten zone along a metal bar

Zone melting is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by John Desmond Bernal and further developed by William G. Pfann in Bell Labs as a method to prepare high-purity materials, mainly semiconductors, for manufacturing transistors. Its first commercial use was in germanium, refined to one atom of impurity per ten billion, but the process can be extended to virtually any solute–solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.

<span class="mw-page-title-main">Czochralski method</span> Method of crystal growth

The Czochralski method, also Czochralski technique or Czochralski process, is a method of crystal growth used to obtain single crystals of semiconductors, metals, salts and synthetic gemstones. The method is named after Polish scientist Jan Czochralski, who invented the method in 1915 while investigating the crystallization rates of metals. He made this discovery by accident: instead of dipping his pen into his inkwell, he dipped it in molten tin, and drew a tin filament, which later proved to be a single crystal. The method is still used in over 90 percent of all electronics in the world that use semiconductors.

<span class="mw-page-title-main">Epitaxy</span> Crystal growth process relative to the substrate

Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.

<span class="mw-page-title-main">Boule (crystal)</span> Synthetic ingot of crystal

A boule is a single-crystal ingot produced by synthetic means.

<span class="mw-page-title-main">Bridgman–Stockbarger method</span> Method of crystallization

The Bridgman–Stockbarger method, or Bridgman–Stockbarger technique, is named after physicist Percy Williams Bridgman (1882–1961) and physicist Donald C. Stockbarger (1895–1952). The method includes two similar but distinct techniques primarily used for growing boules, but which can be used for solidifying polycrystalline ingots as well.

<span class="mw-page-title-main">Seed crystal</span> Small piece of a single crystal used to initiate growth of a larger crystal

A seed crystal is a small piece of single crystal or polycrystal material from which a large crystal of typically the same material is grown in a laboratory. Used to replicate material, the use of seed crystal to promote growth avoids the otherwise slow randomness of natural crystal growth and allows manufacture on a scale suitable for industry.

<span class="mw-page-title-main">Single crystal</span> Material with a continuous, unbroken crystal lattice

In materials science, a single crystal is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absence of the defects associated with grain boundaries can give monocrystals unique properties, particularly mechanical, optical and electrical, which can also be anisotropic, depending on the type of crystallographic structure. These properties, in addition to making some gems precious, are industrially used in technological applications, especially in optics and electronics.

<span class="mw-page-title-main">Float-zone silicon</span>

Float-zone silicon is very pure silicon obtained by vertical zone melting. The process was developed at Bell Labs by Henry Theuerer in 1955 as a modification of a method developed by William Gardner Pfann for germanium. In the vertical configuration molten silicon has sufficient surface tension to keep the charge from separating. The major advantages is crucibleless growth that prevents contamination of the silicon from the vessel itself and therefore an inherently high-purity alternative to boule crystals grown by the Czochralski method.

<span class="mw-page-title-main">Lanthanum gallium silicate</span> Chemical compound

Lanthanum gallium silicate (referred to as LGS in this article), also known as langasite, has a chemical formula of the form A3BC3D2O14, where A, B, C and D indicate particular cation sites. A is a decahedral (Thomson cube) site coordinated by 8 oxygen atoms. B is octahedral site coordinated by 6 oxygen atoms, and C and D are tetrahedral sites coordinated by 4 oxygen atoms. In this material, lanthanum occupied the A-sites, gallium the B, C and half of D-sites, and, silicon the other half of D-sites.

Synthetic alexandrite is an artificially grown crystalline variety of chrysoberyl, composed of beryllium aluminum oxide (BeAl2O4).

<span class="mw-page-title-main">Verneuil method</span> Manufacturing process of synthetic gemstones

The Verneuil method, also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It is primarily used to produce the ruby, sapphire and padparadscha varieties of corundum, as well as the diamond simulants rutile, strontium titanate and spinel. The principle of the process involves melting a finely powdered substance using an oxyhydrogen flame, and crystallising the melted droplets into a boule. The process is considered to be the founding step of modern industrial crystal growth technology, and remains in wide use to this day.

Lutetium aluminum garnet (commonly abbreviated LuAG, molecular formula Lu3Al5O12) is an inorganic compound with a unique crystal structure primarily known for its use in high-efficiency laser devices. LuAG is also useful in the synthesis of transparent ceramics.

Monocrystalline silicon, more often called single-crystal silicon, in short mono c-Si or mono-Si, is the base material for silicon-based discrete components and integrated circuits used in virtually all modern electronic equipment. Mono-Si also serves as a photovoltaic, light-absorbing material in the manufacture of solar cells.

<span class="mw-page-title-main">Vapor–liquid–solid method</span> Mechanism to grow nano wires

The vapor–liquid–solid method (VLS) is a mechanism for the growth of one-dimensional structures, such as nanowires, from chemical vapor deposition. The growth of a crystal through direct adsorption of a gas phase on to a solid surface is generally very slow. The VLS mechanism circumvents this by introducing a catalytic liquid alloy phase which can rapidly adsorb a vapor to supersaturation levels, and from which crystal growth can subsequently occur from nucleated seeds at the liquid–solid interface. The physical characteristics of nanowires grown in this manner depend, in a controllable way, upon the size and physical properties of the liquid alloy.

<span class="mw-page-title-main">Laser-heated pedestal growth</span>

Laser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful CO2 or YAG laser. The laser and hence the floating zone, is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it. This technique for growing crystals from the melt is used in materials research.

<span class="mw-page-title-main">Micro-pulling-down</span> Crystal growth technique

The micro-pulling-down (μ-PD) method is a crystal growth technique based on continuous transport of the melted substance through micro-channel(s) made in a crucible bottom. Continuous solidification of the melt is progressed on a liquid/solid interface positioned under the crucible. In a steady state, both the melt and the crystal are pulled-down with a constant velocity.

<span class="mw-page-title-main">Sublimation sandwich method</span>

The sublimation sandwich method is a kind of physical vapor deposition used for creating man-made crystals. Silicon carbide is the most common crystal grown this way, though others crystals may also be created with it.

<span class="mw-page-title-main">Shaping processes in crystal growth</span>

Shaping processes in crystal growth are a collection of techniques for growing bulk crystals of a defined shape from a melt, usually by constraining the shape of the liquid meniscus by means of a mechanical shaper. Crystals are commonly grown as fibers, solid cylinders, hollow cylinders, and sheets. More complex shapes such as tubes with a complex cross section, and domes have also been produced. Using a shaping process can produce a near net shape crystal and reduce the manufacturing cost for crystals which are composed of very expensive or difficult to machine materials.

References

  1. 1 2 3 Dobrovinskaya, Elena R., Leonid A. Lytvynov, and Valerian Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009. ISBN   0387856943
  2. "Evolution and Application of the Kyropoulos Crystal Growth Method", David F. Bliss, in "50 Years of Progress in Crystal Growth: A Reprint Collection", Ed. Robert Feigelson, Elsevier, 2005 ISBN   0080489931
  3. Kyropoulos, S. (1926). "Ein Verfahren zur Herstellung großer Kristalle". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 154: 308–313. doi:10.1002/zaac.19261540129.
  4. 1 2 3 "МЕТОД КИРОПУЛОСА" [Kyropoulos method]. mathscinet.ru. Retrieved 2019-04-29.
  5. "Growth". clearlysapphire. Archived from the original on 2021-09-17. Retrieved 2019-04-29.
  6. Winkler, Jan; Neubert, Michael (2015). "Automation of Crystal Growth from Melt". In Rudolph, Peter (ed.). Handbook of Crystal Growth (2nd ed.). Elsevier B.V. pp. 1176–1178. doi:10.1016/B978-0-444-63303-3.00028-6. ISBN   9780444633033.
  7. 1 2 Синтез регуляторов простой структуры для управления процессами кристаллизации (PDF). Kharkiv, Ukraine: Вісник національного технічного университету "ХПІ" №15 (1058). 2014. pp. 3–11.
  8. Duffar, Thierry; Sen, Gourav; Stelian, Carmen; Baruchel, José; Tran Caliste, Thu Nhi; Barthalay, Nicolas. Kyropoulos Crystal Growth Presentation (PDF) (pdf). France: Grenoble Institute of Technology. p. 4. Archived from the original (PDF) on 2018-12-22. Retrieved 2019-04-29.
  9. "Status Of the Sapphire Industry." Eric Virey. Yole-CIOE Sapphire Forum, Shenzhen, August 31st 2015. Yole Development. p. 32.
  10. "Monocrystal introduced world's first 350 kg KY sapphire crystal" (PDF). Monocrystal. Retrieved 16 January 2018.[ permanent dead link ]
  11. Bruni, Frank J. (11 September 2014). "Crystal growth of sapphire for substrates for high-brightness, light emitting diodes". Crystal Research and Technology. 50: 133–142. doi:10.1002/crat.201400230. S2CID   93605097.