Subsurface textile irrigation

Last updated
Diagram showing the structure of an example SSTI installation. SSTI Cross-Section.png
Diagram showing the structure of an example SSTI installation.

Subsurface Textile Irrigation (SSTI) is a technology designed specifically for subsurface irrigation in all soil textures from desert sands to heavy clays. The use of SSTI will significantly reduce the usage of water, [1] fertilizer and herbicide. It will lower on-going operational costs and, if maintained properly, will last for decades. By delivering water and nutrients directly to the root zone, plants are healthier and have a far greater yield.

Contents

It is the only irrigation system that can safely use recycled water or treated water without expensive “polishing” treatment because water never reaches the surface.

A typical subsurface textile irrigation system has an impermeable base layer (usually polyethylene or polypropylene), a drip line running along that base, a layer of geotextile on top of the drip line and, finally, a narrow impermeable layer on top of the geotextile (see diagram). Unlike standard drip irrigation, the spacing of emitters in the drip pipe is not critical as the geotextile moves the water along the fabric up to 2m from the dripper.

SSTI is installed 15–20cm below the surface for residential/commercial applications and 30–50cm for agricultural applications.

How SSTI Works

A cross-sectional view of the wetting pattern provided by SSTI, as compared to drip irrigation. SSTI Wetting Patterns.png
A cross-sectional view of the wetting pattern provided by SSTI, as compared to drip irrigation.

The systems rely on specific geotextiles to absorb the water from the drippers and to rapidly transport that water via mass flow and capillary action along the geotextile effectively turning those single drippers into billions of emitters. In essence, this enables intimate control of the speed of water delivery so that the capillary action of any soil can be matched (something that is virtually impossible for any other irrigation method including bare drip pipe below the surface). If the capillary action of the soil can be matched with the water delivery, only the minimal amount of water is needed to service the needs of the plants above (note that capillary forces draw water up from the water source to the roots of the plants).

Shows the flow of water through an SSTI installation as compared to a drip irrigation system. SSTI vs Drip Irrigation Flow Patterns.png
Shows the flow of water through an SSTI installation as compared to a drip irrigation system.

To increase effectiveness, SSTI products should have an impermeable base layer to slow gravitational loss of water and to create an elliptical wetting pattern under the soil surface (see diagram). It should also have a small impermeable top layer to ensure that water from the dripper does not “tunnel” through the geotextile and up to the surface (again a common problem with bare subsurface drip pipe). The effect of these two layers is dramatic as it maximizes the spread of water through the geotextile (up to 10,000 times faster than a clay loam soil as tested by Charles Sturt University [2] ).

When comparing SSTI with surface drip, using the same amount of water, SSTI can cover 2.5 times the volume of soil and takes six times longer to dry down until the next irrigation is required [3]

Recycled Water and Treated Effluent

Recycled water can be used in SSTI systems as it will spread the nutrient load over 2-3 times the soil volume (compared to other irrigation methods). This means that additional nutrient requirements are minimized and the soil will have a long life without overloading other nutrients (especially phosphorus and potassium).

A major benefit of SSTI is that treated effluent can be used but is prevented from reaching the surface. Recreational or agricultural activities can continue on the field during irrigation without the contaminants coming in contact with the public.

Nutrients can be injected through all SSTI systems (fertigation). Macro and micro nutrients can be delivered to specific crops including grass, pasture, trees and vines. The nutrient is placed directly in the root zone so there is almost no wastage and no potential for run off into waterways.

History

Use of Geotextiles

Geotextiles were used for capillary irrigation not long after World War II. However, it was not until 1995 that extensive research was conducted at the CSIRO Division of Land and Water in Griffith, Australia, by Grain Security Foundation Ltd, that SSTI was established as a serious commercial alternative to drip.

Polyester geotextile of specific thickness and manufacture is required to ensure the system has the appropriate flow characteristics and so that it does not become hydrophobic (repels water).

Solving Typical Subsurface Problems

Summary

Studies were done on many forms of geotextile using various dripper rates and configurations to evaluate water flow for the major soil texture types and to determine if SSTI had the same problems experienced by subsurface drip systems (SDI). Specifically, considerable focus was placed on the problem of root intrusion, tunnelling, dripper blockage and insect damage (serious problems associated with SDI).

Root Intrusion

Research data showed that roots could invade the geotextile but did not thrive nor thicken in the polyester geotextile [2] :17 and, therefore, caused no damage. The roots were deterred from entering the dripper area because that area is dry relative to the rest of the system. Roots simply went elsewhere.

Tunneling

Tunneling (the process whereby water works its way up to the surface) was nearly eliminated by the narrow reflective impermeable tape above the drip line. [4]

Blocked Drip Emitters

Drippers are often blocked in bare drip systems due to soil lodging in the emitters and/or soil crusting around the emitters when the system is not operating. SSTI eliminates this problem because there is a physical barrier presented by the geotextile and due to the fact that the soil remains moist for much longer than drip systems (i.e. the soil does not form a crust anyway).

Insects

Similarly, insects are deterred from damaging SSTI systems because of the geotextile barrier.

Water Delivery

Initially solid, thick-walled drip pipes were used in trials at the CSIRO but subsequent trials between 1995 and 1998 demonstrated that drip tapes (thin-walled, flexible pipe) could be used very effectively. The loss of strength from using thin-walled drip tapes was countered by the additional tensile strength of the entire system (base layer, drip tape and geotextile). While significantly reducing the cost of SSTI, the use of drip tapes also permitted the use of large diameter drip lines (of up to 35mm) allowing for run lengths up to one (1) kilometre. The thin, flexible wall of drip tape also meant that master rolls of manufactured product could be much larger (over 600m in length).

Optimal Width and Wetting Patterns

The width of SSTI products varies based on the application. However, at the University of Queensland, Australia [3] trials were conducted to discover the optimal width of the SSTI in black cracking clay with alfalfa sown across a single SSTI line. The SSTI line was 20 cm wide and was installed 30 cm below the surface. The alfalfa germinated directly above the SSTI line but covered 75 cm either side (a total of 1.5 m) in uniform lines. As a result of this research, most SSTI systems are between 6 cm and 20 cm wide. However, some products are up to 2 m wide.

Installation Technologies

In 1997 the first SSTI plow was tested at CSIRO Griffith [5] using a standard three point linkage behind a tractor. This demonstrated that SSTI could be installed at 20–40 cm deep quickly and easily using the plow. SSTI plows are now available to install 1, 2 or 3 lines (more lines are possible).

Other Uses of SSTI

In 1996 the first ebb and flow mat technology for potted plants was commercialized based on SSTI technology using drip tapes to control the water delivery. This ebb and flow mat form of SSTI proved very effective in producing potted plants, sprouted wheat and barley for animal production and for research purposes in producing seed varieties without the use of any overhead irrigation. [5] It also provided an effective fertilizer delivery platform.

Components

Well-designed SSTI systems are laid out essentially the same as drip systems but in many cases SSTI can be laid in a “serpentine” pattern vastly reducing the number of take-off connections and potential leaks.

Most drip tubes/tapes used in SSTI are pressure compensating. For example, using a 16mm drip tape, a run of up to 180 m can be achieved from one connection. Longer runs of up to 1,000 m can be achieved using lower flow rates per lineal metre and/or larger diameter drip tape.

The following components make up a typical SSTI installation:

Using drip tapes in SSTI means that there is a wide range of commercial fittings making SSTI very easy to install. Fittings are usually spinlock or ringlock devices securing the drip tape using a barb.

Performance of SSTI

Advantages of SSTI

The advantages of SSTI are:

Disadvantages of SSTI

The disadvantages of SSTI are:

Further reading

Notes

  1. 1 2 Dodds, Graeme (February 2011), Achieving Sporting Field Management in Western Sydney: A Study of Sustainable Demand Report Phase 1
  2. 1 2 CSIRO Land and Water (August 1998), Controlled Root Zone Irrigation Final Report to Grain Security Foundation
  3. 1 2 3 Grain Security Foundation Ltd (July 1998), Root Zone Irrigation Research and Development (Final Report)
  4. Watson, Luke (February 1999), Sub Surface Irrigation of Grape Vines, La Trobe University, p. 8
  5. 1 2 Charlesworth, P.B., Investigation of the Efficiency and Long Term Performance of Various Sub Surface Irrigation Configurations Under Field Conditions, CSIRO

Related Research Articles

<span class="mw-page-title-main">Irrigation</span> Agricultural artificial application of water to land

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

<span class="mw-page-title-main">Drainage</span> Removal of water from an area

Drainage is the natural or artificial removal of a surface's water and sub-surface water from an area with excess of water. The internal drainage of most agricultural soils is good enough to prevent severe waterlogging, but many soils need artificial drainage to improve production or to manage water supplies.

<span class="mw-page-title-main">Aquifer</span> Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials. Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could create a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.

<span class="mw-page-title-main">Water table</span> Top of a saturated aquifer, or where the water pressure head is equal to the atmospheric pressure

The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with water. It can also be simply explained as the depth below which the ground is saturated.

<span class="mw-page-title-main">French drain</span> Sub-surface drainage system

A French drain is a trench filled with gravel or rock, or both, with or without a perforated pipe that redirects surface water and groundwater away from an area. The perforated pipe is called a weeping tile. When the pipe is draining, it "weeps", or exudes liquids. It was named during a time period when drainpipes were made from terracotta tiles.

Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.

<span class="mw-page-title-main">Nutrient management</span> Management of nutrients in agriculture

Nutrient management is the science and practice directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve optimal nutrient use efficiency, crop yields, crop quality, and economic returns, while reducing off-site transport of nutrients (fertilizer) that may impact the environment. It involves matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place of nutrient application.

<span class="mw-page-title-main">Vadose zone</span> Unsaturated aquifer above the water table

The vadose zone, also termed the unsaturated zone, is the part of Earth between the land surface and the top of the phreatic zone, the position at which the groundwater is at atmospheric pressure. Hence, the vadose zone extends from the top of the ground surface to the water table.

<span class="mw-page-title-main">Sewage farm</span>

Sewage farms use sewage for irrigation and fertilizing agricultural land. The practice is common in warm, arid climates where irrigation is valuable while sources of fresh water are scarce. Suspended solids may be converted to humus by microbes and bacteria in order to supply nitrogen, phosphorus and other plant nutrients for crop growth. Many industrialized nations use conventional sewage treatment plants nowadays instead of sewage farms. These reduce vector and odor problems; but sewage farming remains a low-cost option for some developing countries. Sewage farming should not be confused with sewage disposal through infiltration basins or subsurface drains.

<span class="mw-page-title-main">Fertigation</span> Adding fertilizers to an irrigation system

Fertigation is the injection of fertilizers, used for soil amendments, water amendments and other water-soluble products into an irrigation system.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

<span class="mw-page-title-main">Soil salinity control</span> Controlling the problem of soil salinity

Soil salinity control relates to controlling the problem of soil salinity, with the aim of preventing soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also called soil improvement, rehabilitation, remediation, recuperation, or amelioration.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">SahysMod</span>

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

Sand-based athletic fields are sports turf playing fields constructed on top of sand surfaces. It is important that turf managers select the most suitable type of sand when constructing these fields, as sands with different shapes offer varied pros and cons. Regular maintenance of sand-based athletic fields is just as important as the initial construction of the field. As water and other aqueous solutions are added, a layer of thatch may accumulate on the surface of the turf. There are different ways to manage this level of thatch, however the most common are aeration and vertical mowing.

<span class="mw-page-title-main">Surface irrigation</span>

Surface irrigation is where water is applied and distributed over the soil surface by gravity. It is by far the most common form of irrigation throughout the world and has been practiced in many areas virtually unchanged for thousands of years.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

<span class="mw-page-title-main">Agricultural hydrology</span>

Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage.

A subsurface dyke is a structure that is built in an aquifer with the intention of obstructing the natural flow of ground water, thereby raising the ground water level and increasing the amount of water stored in the aquifer. Acting as an underground barrier impermeable to water, it controls the groundwater flow in an aquifer and raises the water table.

<span class="mw-page-title-main">Micro-irrigation</span> Low pressure and flow irrigation system

Micro-irrigation, also called Micro-spray,localized, low-volume, low-flow, or trickle irrigation, is an irrigation method with lower water pressure and flow than a traditional sprinkler system. Low-volume irrigation is used in agriculture for row crops, orchards, and vineyards. It is also used in horticulture in wholesale nurseries, in landscaping for civic, commercial, and private landscapes and gardens, and in the science and practice of restoration ecology and environmental remediation. The lower volume allows the water to be absorbed into slow-percolation soils such as clay, minimizing runoff.