Sudhin Datta

Last updated

Sudhin Datta (born 1951) is an ExxonMobil Chemical scientist noted for the development of Vistamaxx propylene-based elastomers. [1]

Contents

Education

Datta earned his undergraduate degree in chemistry from Indian Institute of Technology at Kanpur in 1974. He completed his Ph.D. in organometallic chemistry from Harvard University in 1978. He held postdoctoral appointments at the University of Toronto and at the University of Chicago. [2]

Career

In 1981, he joined Exxon Chemical Co. under Edward Kresge where his research focused on the development of polyolefin elastomers. [3] [4] With David J. Lohse, he published the textbook Polymeric Compatibilizers. [5]

Awards

Related Research Articles

<span class="mw-page-title-main">Elastomer</span> Polymer with rubber-like elastic properties

An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation is feasible without breaking of covalent bonds. At ambient temperatures, such rubbers are thus relatively compliant and deformable. Their primary uses are for seals, adhesives and molded flexible parts.

<span class="mw-page-title-main">EPDM rubber</span> Type of synthetic rubber

EPDM rubber is a type of synthetic rubber that is used in many applications. Dienes used in the manufacture of EPDM rubbers are ethylidene norbornene (ENB), dicyclopentadiene (DCPD), and vinyl norbornene (VNB). 4-8% of these monomers are typically used.

<span class="mw-page-title-main">Butyl rubber</span> Synthetic rubber; a copolymer of isobutylene with isoprene

Butyl rubber, sometimes just called "butyl", is a synthetic rubber, a copolymer of isobutylene with isoprene. The abbreviation IIR stands for isobutylene isoprene rubber. Polyisobutylene, also known as "PIB" or polyisobutene, (C4H8)n, is the homopolymer of isobutylene, or 2-methyl-1-propene, on which butyl rubber is based. Butyl rubber is produced by polymerization of about 98% of isobutylene with about 2% of isoprene. Structurally, polyisobutylene resembles polypropylene, but has two methyl groups substituted on every other carbon atom, rather than one. Polyisobutylene is a colorless to light yellow viscoelastic material. It is generally odorless and tasteless, though it may exhibit a slight characteristic odor.

FKM is a family of fluorocarbon-based fluoroelastomer materials defined by ASTM International standard D1418, and ISO standard 1629. It is commonly called fluorine rubber or fluoro-rubber. FKM is an abbreviation of Fluorine Kautschuk Material. All FKMs contain vinylidene fluoride as a monomer. Originally developed by DuPont, FKMs are today also produced by many companies, including: Daikin (Dai-El), 3M (Dyneon), Solvay S.A. (Tecnoflon), HaloPolymer (Elaftor), Gujarat Fluorochemicals (Fluonox), and several Chinese manufacturers. Fluoroelastomers are more expensive than neoprene or nitrile rubber elastomers. They provide additional heat and chemical resistance. FKMs can be divided into different classes on the basis of either their chemical composition, their fluorine content, or their cross-linking mechanism.

<span class="mw-page-title-main">Ethylene propylene rubber</span>

Ethylene propylene rubber is a type of synthetic elastomer that is closely related to EPDM rubber. Since introduction in the 1960s, annual production has increased to 870,000 metric tons.

<span class="mw-page-title-main">James C. Stevens</span> American organometallic chemist

James Carl Stevens, a chemist, was the first Distinguished Fellow, at the Dow Chemical Company, retiring in January 2015. His area of expertise is organometallic chemistry and his primary field of research is in the area of polyolefin catalysis, particularly in the area of polyethylene, polypropylene, ethylene/styrene copolymers, and the combinatorial discovery of organometallic single-site catalysts. Stevens major contributions have come in the discovery and commercial implementation of single-site polyolefin catalysts. He invented and led the commercialization of constrained geometry catalyst for the polymerization of olefins. These have been commercialized by Dow as a number of polymers, elastomers and plostomers.

<span class="mw-page-title-main">Charles Goodyear Medal</span> Award

The Charles Goodyear Medal is the highest honor conferred by the American Chemical Society, Rubber Division. Established in 1941, the award is named after Charles Goodyear, the discoverer of vulcanization, and consists of a gold medal, a framed certificate and prize money. The medal honors individuals for "outstanding invention, innovation, or development which has resulted in a significant change or contribution to the nature of the rubber industry". Awardees give a lecture at an ACS Rubber Division meeting, and publish a review of their work in the society's scientific journal Rubber Chemistry and Technology.

The Melvin Mooney Distinguished Technology Award is a professional award conferred by the American Chemical Society, Rubber Division. Established in 1983, the award is named after Melvin Mooney, developer of the Mooney viscometer and of the Mooney-Rivlin hyperelastic law. The award consists of an engraved plaque and prize money. The medal honors individuals "who have exhibited exceptional technical competency by making significant and repeated contributions to rubber science and technology".

<span class="mw-page-title-main">Graft polymer</span> Polymer with a backbone of one composite and random branches of another composite

In polymer chemistry, graft polymers are segmented copolymers with a linear backbone of one composite and randomly distributed branches of another composite. The picture labeled "graft polymer" shows how grafted chains of species B are covalently bonded to polymer species A. Although the side chains are structurally distinct from the main chain, the individual grafted chains may be homopolymers or copolymers. Graft polymers have been synthesized for many decades and are especially used as impact resistant materials, thermoplastic elastomers, compatibilizers, or emulsifiers for the preparation of stable blends or alloys. One of the better-known examples of a graft polymer is a component used in high impact polystyrene, consisting of a polystyrene backbone with polybutadiene grafted chains.

Charles Michael Roland was Head of the Polymer Physics Section at the Naval Research Lab in Washington DC from 1989 to 2015. His research was concerned primarily with the dynamics of condensed matter, including polymers and liquid crystals, with applications to military armor and infrastructure protection. He is noted for his development of elastomeric coatings for blast protection, and for diverse accomplishments in the field of elastomer science. From 1991-1999, he served as the 8th editor of the scientific journal Rubber Chemistry and Technology, and a Fellow of the American Physical Society and the Institute of Materials, Minerals, and Mining (UK).

Joseph A. Kuczkowski is a retired Goodyear scientist, noted for successfully explaining the mechanisms of antioxidant and antiozonant function, and for commercial development of new antiozonant systems and improvement of the stability of polymeric materials.

Edward N. Kresge is a retired Exxon scientist, noted for his development of ethylene-propylene viscosity index modifiers, polyolefin thermoplastic elastomers, and tailored molecular weight density EPDM elastomers.

Aubert Y. Coran (1932-2020) was an American scientist noted for his contributions to thermoplastic elastomers and vulcanization chemistry of rubber. In 1983, he won the Melvin Mooney Distinguished Technology Award, bestowed by the American Chemical Society to individuals "who have exhibited exceptional technical competency by making significant and repeated contributions to rubber science and technology". In 1995, the rubber division of the American Chemical Society bestowed on Coran the Charles Goodyear Medal in honor of his international contributions to polymer science and development.

Francis Paul Baldwin was a former Exxon Chief Scientist noted for his work on chemical modifications of low functionality elastomers.

<span class="mw-page-title-main">Sulfur vulcanization</span> Process to transform the material properties of natural rubber

Sulfur vulcanization is a chemical process for converting natural rubber or related polymers into materials of varying hardness, elasticity, and mechanical durability by heating them with sulfur or sulfur-containing compounds. Sulfur forms cross-linking bridges between sections of polymer chains which affects the mechanical and electronic properties. Many products are made with vulcanized rubber, including tires, shoe soles, hoses, and conveyor belts. The term vulcanization is derived from Vulcan, the Roman god of fire.

Roderic Quirk is an Emeritus University of Akron professor noted for contributions to anionic polymerization technology that is used to produce butadiene, isoprene and styrene homo and block copolymers.

Albert M. Gessler was an ExxonMobil research chemist known for the development of elastomeric thermoplastics.

Maria D. Ellul is a retired ExxonMobil materials scientist known for her contributions to and development of commercial polyolefin and polyamide specialty thermoplastic elastomers, and recognized as one of the first prominent women scientists in the rubber industry.

Andy Haishung Tsou is a retired ExxonMobil materials scientist known for developing synchrotron X-ray scattering and atomic force microscopy techniques for polymer research, applying the techniques in service of development and commercialization of new polyolefin materials.

David John Lohse is a retired ExxonMobil materials scientist known for contributions on thermodynamics of mixing, nanocomposites for controlling permeability, neutron scattering of polymers, rheology of polymers.

References

  1. "Sudhin Datta: 2015 Charles Goodyear Medalist". Rubber Chemistry and Technology. 88 (1): G2. 2015. doi:10.5254/0035-9475-88.1.G2 . Retrieved June 29, 2022.
  2. "ORAL HISTORY INTERVIEWS". rubber.org. ACS Rubber Division. Retrieved October 9, 2022.
  3. Lohse, David J.; Datta, Sudhin; Kresge, Edward N. (1991). "Graft copolymer compatibilizers for blends of polypropylene and ethylene-propylene copolymers". Macromolecules. 24 (2): 561–566. Bibcode:1991MaMol..24..561L. doi:10.1021/ma00002a034 . Retrieved August 31, 2022.
  4. Cozewith, Charles; Datta, Sudhin; Hu, Weiguo. "United States Patent US6525157B2". United States Patent Office. Retrieved August 31, 2022 via Google Patents.
  5. Datta, Sudhin; Lohse, David J. (January 1, 1996). Polymeric Compatibilizers: Uses and Benefits in Polymer Blends. Hanser Pub Inc. ISBN   978-1569901946 . Retrieved December 26, 2023.
  6. Detore, Don (July 15, 2015). "Charles Goodyear medalist strives to help people". Rubber News . Crain. Retrieved June 29, 2022.