For any sunflower size, does every set of uniformly sized sets which is of cardinality greater than some exponential in the set size contain a sunflower?
In the mathematical fields of set theory and extremal combinatorics, a sunflower or -system [1] is a collection of sets in which all possible distinct pairs of sets share the same intersection. This common intersection is called the kernel of the sunflower.
The naming arises from a visual similarity to the botanical sunflower, arising when a Venn diagram of a sunflower set is arranged in an intuitive way. Suppose the shared elements of a sunflower set are clumped together at the centre of the diagram, and the nonshared elements are distributed in a circular pattern around the shared elements. Then when the Venn diagram is completed, the lobe-shaped subsets, which encircle the common elements and one or more unique elements, take on the appearance of the petals of a flower.
The main research question arising in relation to sunflowers is: under what conditions does there exist a large sunflower (a sunflower with many sets) in a given collection of sets? The -lemma, sunflower lemma, and the Erdős-Rado sunflower conjecture give successively weaker conditions which would imply the existence of a large sunflower in a given collection, with the latter being one of the most famous open problems of extremal combinatorics. [2]
Suppose is a set system over , that is, a collection of subsets of a set . The collection is a sunflower (or -system) if there is a subset of such that for each distinct and in , we have . In other words, a set system or collection of sets is a sunflower if all sets in share the same common subset of elements. An element in is either found in the common subset or else appears in at most one of the elements. No element of is shared by just some of the subset, but not others. Note that this intersection, , may be empty; a collection of pairwise disjoint subsets is also a sunflower. Similarly, a collection of sets each containing the same elements is also trivially a sunflower.
The study of sunflowers generally focuses on when set systems contain sunflowers, in particular, when a set system is sufficiently large to necessarily contain a sunflower.
Specifically, researchers analyze the function for nonnegative integers , which is defined to be the smallest nonnegative integer such that, for any set system such that every set has cardinality at most , if has more than sets, then contains a sunflower of sets. Though it is not obvious that such an must exist, a basic and simple result of Erdős and Rado, the Delta System Theorem, indicates that it does.
Erdos-Rado Delta System Theorem(corollary of the Sunflower lemma):
For each , , there is an integer such that if a set system of -sets is of cardinality greater than , then contains a sunflower of size .
In the literature, is often assumed to be a set rather than a collection, so any set can appear in at most once. By adding dummy elements, it suffices to only consider set systems such that every set in has cardinality , so often the sunflower lemma is equivalently phrased as holding for "-uniform" set systems. [3]
Erdős & Rado (1960 , p. 86) proved the sunflower lemma, which states that [4]
That is, if and are positive integers, then a set system of cardinality greater than or equal to of sets of cardinality contains a sunflower with at least sets.
The Erdős-Rado sunflower lemma can be proved directly through induction. First, , since the set system must be a collection of distinct sets of size one, and so of these sets make a sunflower. In the general case, suppose has no sunflower with sets. Then consider to be a maximal collection of pairwise disjoint sets (that is, is the empty set unless , and every set in intersects with some ). Because we assumed that had no sunflower of size , and a collection of pairwise disjoint sets is a sunflower, .
Let . Since each has cardinality , the cardinality of is bounded by . Define for some to be
Then is a set system, like , except that every element of has elements. Furthermore, every sunflower of corresponds to a sunflower of , simply by adding back to every set. This means that, by our assumption that has no sunflower of size , the size of must be bounded by .
Since every set intersects with one of the 's, it intersects with , and so it corresponds to at least one of the sets in a :
Hence, if , then contains an set sunflower of size sets. Hence, and the theorem follows. [2]
The sunflower conjecture is one of several variations of the conjecture of Erdős & Rado (1960 , p. 86) that for each , for some constant depending only on . The conjecture remains wide open even for fixed low values of ; for example ; it is not known whether for some . [5] A 2021 paper by Alweiss, Lovett, Wu, and Zhang gives the best progress towards the conjecture, proving that for . [6] [7] A month after the release of the first version of their paper, Rao sharpened the bound to ; [8] the current best-known bound is . [9]
Erdős and Rado proved the following lower bound on . It is equal to the statement that the original sunflower lemma is optimal in .
Theorem.
Proof. For a set of sequence of distinct elements is not a sunflower. Let denote the size of the largest set of -sets with no sunflower. Let be such a set. Take an additional set of elements and add one element to each set in one of disjoint copies of . Take the union of the disjoint copies with the elements added and denote this set . The copies of with an element added form an partition of . We have that,. is sunflower free since any selection of sets if in one of the disjoint partitions is sunflower free by assumption of H being sunflower free. Otherwise, if sets are selected from across multiple sets of the partition, then two must be selected from one partition since there are only partitions. This implies that at least two sets and not all the sets will have an element in common. Hence this is not a sunflower of sets.
A stronger result is the following theorem:
Theorem.
Proof. Let and be two sunflower free families. For each set in F, append every set in to to produce many sets. Denote this family of sets . Take the union of over all in . This produces a family of sets which is sunflower free.
The best existing lower bound for the Erdos-Rado Sunflower problem for is , due to Abott, Hansen, and Sauer. [10] [11] This bound has not been improved in over 50 years.
The sunflower lemma has numerous applications in theoretical computer science. For example, in 1986, Razborov used the sunflower lemma to prove that the Clique language required (superpolynomial) size monotone circuits, a breakthrough result in circuit complexity theory at the time. Håstad, Jukna, and Pudlák used it to prove lower bounds on depth- circuits. It has also been applied in the parameterized complexity of the hitting set problem, to design fixed-parameter tractable algorithms for finding small sets of elements that contain at least one element from a given family of sets. [12]
A version of the -lemma which is essentially equivalent to the Erdős-Rado -system theorem states that a countable collection of k-sets contains a countably infinite sunflower or -system.
The -lemma states that every uncountable collection of finite sets contains an uncountable -system.
The -lemma is a combinatorial set-theoretic tool used in proofs to impose an upper bound on the size of a collection of pairwise incompatible elements in a forcing poset. It may for example be used as one of the ingredients in a proof showing that it is consistent with Zermelo–Fraenkel set theory that the continuum hypothesis does not hold. It was introduced by Shanin ( 1946 ).
If is an -sized collection of countable subsets of , and if the continuum hypothesis holds, then there is an -sized -subsystem. Let enumerate . For , let . By Fodor's lemma, fix stationary in such that is constantly equal to on . Build of cardinality such that whenever are in then . Using the continuum hypothesis, there are only -many countable subsets of , so by further thinning we may stabilize the kernel.
In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function where U is an open subset of that satisfies Laplace's equation, that is,
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.
In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of extremal set theory.
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.
Sperner's theorem, in discrete mathematics, describes the largest possible families of finite sets none of which contain any other sets in the family. It is one of the central results in extremal set theory. It is named after Emanuel Sperner, who published it in 1928.
In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.
In mathematics, the dyadic cubes are a collection of cubes in Rn of different sizes or scales such that the set of cubes of each scale partition Rn and each cube in one scale may be written as a union of cubes of a smaller scale. These are frequently used in mathematics as a way of discretizing objects in order to make computations or analysis easier. For example, to study an arbitrary subset of A of Euclidean space, one may instead replace it by a union of dyadic cubes of a particular size that cover the set. One can consider this set as a pixelized version of the original set, and as smaller cubes are used one gets a clearer image of the set A. Most notable appearances of dyadic cubes include the Whitney extension theorem and the Calderón–Zygmund lemma.
In arithmetic combinatorics, the Erdős–Szemerédi theorem states that for every finite set of integers, at least one of , the set of pairwise sums or , the set of pairwise products form a significantly larger set. More precisely, the Erdős–Szemerédi theorem states that there exist positive constants c and such that for any non-empty set
In mathematics, Sobolev spaces for planar domains are one of the principal techniques used in the theory of partial differential equations for solving the Dirichlet and Neumann boundary value problems for the Laplacian in a bounded domain in the plane with smooth boundary. The methods use the theory of bounded operators on Hilbert space. They can be used to deduce regularity properties of solutions and to solve the corresponding eigenvalue problems.
In graph theory, a branch of mathematics, the Erdős–Hajnal conjecture states that families of graphs defined by forbidden induced subgraphs have either large cliques or large independent sets. It is named for Paul Erdős and András Hajnal, who first posed it as an open problem in a paper from 1977.
This is a glossary of set theory.
In mathematics, the Rokhlin lemma, or Kakutani–Rokhlin lemma is an important result in ergodic theory. It states that an aperiodic measure preserving dynamical system can be decomposed to an arbitrary high tower of measurable sets and a remainder of arbitrarily small measure. It was proven by Vladimir Abramovich Rokhlin and independently by Shizuo Kakutani. The lemma is used extensively in ergodic theory, for example in Ornstein theory and has many generalizations.
In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.
In graph theory, the hypergraph removal lemma states that when a hypergraph contains few copies of a given sub-hypergraph, then all of the copies can be eliminated by removing a small number of hyperedges. It is a generalization of the graph removal lemma. The special case in which the graph is a tetrahedron is known as the tetrahedron removal lemma. It was first proved by Nagle, Rödl, Schacht and Skokan and, independently, by Gowers.
Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's theorem is a special case of Szemerédi's theorem for the case .
The blow-up lemma, proved by János Komlós, Gábor N. Sárközy, and Endre Szemerédi in 1997, is an important result in extremal graph theory, particularly within the context of the regularity method. It states that the regular pairs in the statement of Szemerédi's regularity lemma behave like complete bipartite graphs in the context of embedding spanning graphs of bounded degree.
The method of (hypergraph) containers is a powerful tool that can help characterize the typical structure and/or answer extremal questions about families of discrete objects with a prescribed set of local constraints. Such questions arise naturally in extremal graph theory, additive combinatorics, discrete geometry, coding theory, and Ramsey theory; they include some of the most classical problems in the associated fields.
In extremal set theory, the Ahlswede–Khachatrian theorem generalizes the Erdős–Ko–Rado theorem to t-intersecting families. Given parameters n, k and t, it describes the maximum size of a t-intersecting family of subsets of of size k, as well as the families achieving the maximum size.