Sunrise problem

Last updated
Usually inferred from repeated observations: "The sun always rises in the east". Buck Creek IN - sunrise.jpg
Usually inferred from repeated observations: "The sun always rises in the east".

The sunrise problem can be expressed as follows: "What is the probability that the sun will rise tomorrow?" The sunrise problem illustrates the difficulty of using probability theory when evaluating the plausibility of statements or beliefs.

Contents

According to the Bayesian interpretation of probability, probability theory can be used to evaluate the plausibility of the statement, "The sun will rise tomorrow."

The sunrise problem was first introduced publicly in 1763 by Richard Price in his famous coverage of Thomas Bayes' foundational work in Bayesianism. [1]

Laplace's approach

Pierre-Simon Laplace, who treated it by means of his rule of succession. [2] [3] Let p be the long-run frequency of sunrises, i.e., the sun rises on 100 ×p% of days. Prior to knowing of any sunrises, one is completely ignorant of the value of p. Laplace represented this prior ignorance by means of a uniform probability distribution on p.

For instance, the probability that p is between 20% and 50% is just 30%. This must not be interpreted to mean that in 30% of all cases, p is between 20% and 50%. Rather, it means that one's state of knowledge (or ignorance) justifies one in being 30% sure that the sun rises between 20% of the time and 50% of the time. Given the value of p, and no other information relevant to the question of whether the sun will rise tomorrow, the probability that the sun will rise tomorrow is p. But we are not "given the value of p". What we are given is the observed data: the sun has risen every day on record. Laplace inferred the number of days by saying that the universe was created about 6000 years ago, based on a young-earth creationist reading of the Bible.

To find the conditional probability distribution of p given the data, one uses Bayes' theorem, which some call the Bayes–Laplace rule. Having found the conditional probability distribution of p given the data, one may then calculate the conditional probability, given the data, that the sun will rise tomorrow. That conditional probability is given by the rule of succession. The plausibility that the sun will rise tomorrow increases with the number of days on which the sun has risen so far. Specifically, assuming p has an a-priori distribution that is uniform over the interval [0,1], and that, given the value of p, the sun independently rises each day with probability p, the desired conditional probability is:

By this formula, if one has observed the sun rising 10000 times previously, the probability it rises the next day is . Expressed as a percentage, this is approximately a chance.

However, Laplace recognized this to be a misapplication of the rule of succession through not taking into account all the prior information available immediately after deriving the result:

But this number [the probability of the sun coming up tomorrow] is far greater for him who, seeing in the totality of phenomena the principle regulating the days and seasons, realizes that nothing at present moment can arrest the course of it.

E.T. Jaynes noted that Laplace's warning had gone unheeded by workers in the field. [4]

A reference class problem arises: the plausibility inferred will depend on whether we take the past experience of one person, of humanity, or of the earth. A consequence is that each referent would hold different plausibility of the statement. In Bayesianism, any probability is a conditional probability given what one knows. That varies from one person to another.

See also

Related Research Articles

<span class="mw-page-title-main">Frequentist probability</span> Interpretation of probability

Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials . Probabilities can be found by a repeatable objective process. The continued use of frequentist methods in scientific inference, however, has been called into question.

The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory.

The likelihood function is the joint probability mass of observed data viewed as a function of the parameters of a statistical model. Intuitively, the likelihood function is the probability of observing data assuming is the actual parameter.

In probability theory and statistics, Bayes' theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the individual is typical of the population as a whole.

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Fundamentally, Bayesian inference uses prior knowledge, in the form of a prior distribution in order to estimate posterior probabilities. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called "Bayesian probability".

<span class="mw-page-title-main">Naive Bayes classifier</span> Probabilistic classification algorithm

In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models.

<span class="mw-page-title-main">Thomas Bayes</span> British statistician (c. 1701 – 1761)

Thomas Bayes was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem. Bayes never published what would become his most famous accomplishment; his notes were edited and published posthumously by Richard Price.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

<span class="mw-page-title-main">Dempster–Shafer theory</span> Mathematical framework to model epistemic uncertainty

The theory of belief functions, also referred to as evidence theory or Dempster–Shafer theory (DST), is a general framework for reasoning with uncertainty, with understood connections to other frameworks such as probability, possibility and imprecise probability theories. First introduced by Arthur P. Dempster in the context of statistical inference, the theory was later developed by Glenn Shafer into a general framework for modeling epistemic uncertainty—a mathematical theory of evidence. The theory allows one to combine evidence from different sources and arrive at a degree of belief that takes into account all the available evidence.

The principle of indifference is a rule for assigning epistemic probabilities. The principle of indifference states that in the absence of any relevant evidence, agents should distribute their credence equally among all the possible outcomes under consideration.

<span class="mw-page-title-main">Pierre-Simon Laplace</span> French polymath (1749–1827)

Pierre-Simon, Marquis de Laplace was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique céleste (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace.

Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials. More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution.

A prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.

In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data.

Equiprobability is a property for a collection of events that each have the same probability of occurring. In statistics and probability theory it is applied in the discrete uniform distribution and the equidistribution theorem for rational numbers. If there are events under consideration, the probability of each occurring is

In statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth count data, eliminating issues caused by certain values having 0 occurrences. Given a set of observation counts from a -dimensional multinomial distribution with trials, a "smoothed" version of the counts gives the estimator

Bayesian econometrics is a branch of econometrics which applies Bayesian principles to economic modelling. Bayesianism is based on a degree-of-belief interpretation of probability, as opposed to a relative-frequency interpretation.

An Essay towards solving a Problem in the Doctrine of Chances is a work on the mathematical theory of probability by Thomas Bayes, published in 1763, two years after its author's death, and containing multiple amendments and additions due to his friend Richard Price. The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre. Contemporary reprints of the Essay carry a more specific and significant title: A Method of Calculating the Exact Probability of All Conclusions founded on Induction.

Bayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality. These norms can be divided into static constraints, governing the rationality of beliefs at any moment, and dynamic constraints, governing how rational agents should change their beliefs upon receiving new evidence. The most characteristic Bayesian expression of these principles is found in the form of Dutch books, which illustrate irrationality in agents through a series of bets that lead to a loss for the agent no matter which of the probabilistic events occurs. Bayesians have applied these fundamental principles to various epistemological topics but Bayesianism does not cover all topics of traditional epistemology. The problem of confirmation in the philosophy of science, for example, can be approached through the Bayesian principle of conditionalization by holding that a piece of evidence confirms a theory if it raises the likelihood that this theory is true. Various proposals have been made to define the concept of coherence in terms of probability, usually in the sense that two propositions cohere if the probability of their conjunction is higher than if they were neutrally related to each other. The Bayesian approach has also been fruitful in the field of social epistemology, for example, concerning the problem of testimony or the problem of group belief. Bayesianism still faces various theoretical objections that have not been fully solved.

References

  1. "LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S". Philosophical Transactions of the Royal Society of London (in Latin). 53: 409–410. 1763-12-31. doi:10.1098/rstl.1763.0053. ISSN   0261-0523.
  2. Laplace, Pierre-Simon (1814). A Philosophical Essay on Probabilities (PDF). Translated by Trruscott, Frederick Wilson; Emory, Frederick Lincoln. John Wiley & Son and Chapman & Hall.
  3. Chung, K. L. & AitSahlia, F. (2003). Elementary probability theory: with stochastic processes and an introduction to mathematical finance. Springer. pp. 129–130. ISBN   978-0-387-95578-0.
  4. Jaynes, E.T. (2003). "Chapter 18.6". In G. Larry Bretthorst (ed.). Probability Theory: The Logic of Science. Cambridge University Press. p. 564. doi:10.1017/CBO9780511790423. ISBN   978-0-521-59271-0. Archived from the original on 2022-06-03.

Further reading