Super High Altitude Research Project

Last updated

The Super High Altitude Research Project (Super HARP, SHARP) was a U.S. government project conducting research into the firing of high-velocity projectiles high into the atmosphere using a two-stage light-gas gun, with the ultimate goal of propelling satellites into Earth orbit. Design work on the prototype space gun began as early as 1985 at the Lawrence Livermore National Laboratory in California and became operational in December 1992. [1] It is the largest gas gun in the world. [2]

Contents

Design and operation

Rather than a single straight barrel, the SHARP gun uses an L-shape design with two separate sections; the 270 ft (82 m) long steel combustion section & pump tube section is connected to the 155 ft (47 m) long launch tube (or barrel) at a right angle. 100,000 kg (220,000 lb) rail-mounted sleds sit at both ends of the pump tube to absorb recoil energy from firing and a smaller 10,000 kg (22,000 lb) sled is mounted on a perpendicular set of tracks at the aft-end of the launch-tube near the junction point. [2]

The firing sequence begins with the ignition of a methane gas mixture in the combustion section behind the piston at the far end of the pump tube. The resultant explosion rapidly drives the 1,000 kg (2,200 lb) steel piston down the pump tube and further compresses the pre-pressurized hydrogen gas that fills the other end of the pump tube. As the piston accelerates toward the junction point, it rapidly compresses the hydrogen gas in the pump tube to a pressure of 60,000 psi (4,100 atm). The small projectile, meanwhile, rests in the adjacent depressurized launch tube. As the hydrogen gas reaches maximum pressure, a coupling holding the projectile in place is destroyed and the hydrogen drives the projectile down a 4 in (100 mm) diameter barrel at extremely high velocities until it bursts through a thin plastic sheet covering the end of the gun. All recoil forces are absorbed by the rail-mounted sleds as they are propelled outwards along their tracks. [2]

Tests and cancellation

Headed by John Hunter, the SHARP gun fired projectiles using expanding hydrogen and achieved velocities of 3 km/s (6,700 mph) or Mach 8.8 for 5 kg (11 lb) projectiles. Had the project continued, there were plans to elevate the tube and begin space launch trials potentially reaching speeds of up to 7 km/s (16,000 mph), or about Mach 21. [1]

The tests were designed as a precursor to the "Jules Verne Launcher," an even larger light-gas gun with a 3,500 m (11,500 ft) barrel length designed in the early 1990s for first-stage satellite launch. This was to cost $1 billion, but funding was not forthcoming and the project was eventually canceled in 1995. However, the SHARP gun continued to be used for high-speed tests in other areas of research, such as scramjet development. [1]

The concept of ballistic escape velocity is well proven. The largest challenge is maintaining such high velocities, because air resistance and aerothermal heating will significantly slow down any such object.

See also

Related Research Articles

<span class="mw-page-title-main">Air gun</span> Gun that uses compressed air to launch projectiles

An air gun or airgun is a gun that uses energy from compressed air or other gases that are mechanically pressurized and then released to propel and accelerate projectiles, similar to the principle of the primitive blowgun. This is in contrast to a firearm, which shoots projectiles using energy generated via exothermic combustion (deflagration) of chemical propellants, most often black powder or smokeless powder.

<span class="mw-page-title-main">BB gun</span> Air gun that uses metallic ball projectiles called BBs

A BB gun is a type of air gun designed to shoot metallic spherical projectiles called BBs, which are approximately the same size as BB-size lead birdshot used in shotguns. Modern BB guns usually have a smoothbore barrel with a 4.5 mm (0.177 in) caliber, and use steel balls that measure 4.3–4.4 mm (0.171–0.173 in) in diameter and 0.33–0.35 g (5.1–5.4 gr) in weight, usually zinc- or copper-plated for corrosion resistance. Some manufacturers still make the slightly larger traditional lead balls that weigh around 0.48–0.50 g (7.4–7.7 gr), which are generally intended for use in rifled barrels.

<span class="mw-page-title-main">Recoil</span> Backward momentum of a gun when it is discharged

Recoil is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force required to accelerate something will evoke an equal but opposite reactional force, which means the forward momentum gained by the projectile and exhaust gases (ejectae) will be mathematically balanced out by an equal and opposite momentum exerted back upon the gun.

<span class="mw-page-title-main">Railgun</span> Electrically powered electromagnetic projectile launcher

A railgun or rail gun is a linear motor device, typically designed as a weapon, that uses electromagnetic force to launch high-velocity projectiles. The projectile normally does not contain explosives, instead relying on the projectile's high kinetic energy to inflict damage. The railgun uses a pair of parallel conductors (rails), along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail. It is based on principles similar to those of the homopolar motor.

<span class="mw-page-title-main">Recoilless rifle</span> Type of light artillery gun

A recoilless rifle (rifled), recoilless launcher (smoothbore), or simply recoilless gun, sometimes abbreviated to "RR" or "RCL" is a type of lightweight artillery system or man-portable launcher that is designed to eject some form of countermass such as propellant gas from the rear of the weapon at the moment of firing, creating forward thrust that counteracts most of the weapon's recoil. This allows for the elimination of much of the heavy and bulky recoil-counteracting equipment of a conventional cannon as well as a thinner-walled barrel, and thus the launch of a relatively large projectile from a platform that would not be capable of handling the weight or recoil of a conventional gun of the same size. Technically, only devices that use spin-stabilized projectiles fired from a rifled barrel are recoilless rifles, while smoothbore variants are recoilless guns. This distinction is often lost, and both are often called recoilless rifles.

Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.

<span class="mw-page-title-main">Project HARP</span> US-Canada ballistics research project famous for its extremely large gun

Project HARP, short for High Altitude Research Project, was a joint venture of the United States Department of Defense and Canada's Department of National Defence created with the goal of studying ballistics of re-entry vehicles and collecting upper atmospheric data for research. Unlike conventional space launching methods that rely on rockets, HARP instead used very large guns to fire projectiles into the atmosphere at extremely high speeds.

<span class="mw-page-title-main">V-3 cannon</span> German World War II large-caliber artillery

The V-3 (German: Vergeltungswaffe 3, was a German World War II large-caliber gun working on the multi-charge principle whereby secondary propellant charges are fired to add velocity to a projectile, built in tunnels and permanently aimed at London, England.

<span class="mw-page-title-main">Gun barrel</span> Firearm component which guides the projectile during acceleration

A gun barrel is a crucial part of gun-type weapons such as small firearms, artillery pieces, and air guns. It is the straight shooting tube, usually made of rigid high-strength metal, through which a contained rapid expansion of high-pressure gas(es) is used to propel a projectile out of the front end (muzzle) at a high velocity. The hollow interior of the barrel is called the bore, and the diameter of the bore is called its caliber, usually measured in inches or millimetres.

Internal ballistics, a subfield of ballistics, is the study of the propulsion of a projectile.

<span class="mw-page-title-main">Gyrojet</span> Firearm that fires small rocket projectiles

The Gyrojet is a family of unique firearms developed in the 1960s named for the method of gyroscopically stabilizing its projectiles. Rather than inert bullets, Gyrojets fire small rockets called Microjets which have little recoil and do not require a heavy barrel or chamber to resist the pressure of the combustion gases. Velocity on leaving the tube was very low, but increased to around 1,250 feet per second (380 m/s) at 30 feet (9.1 m). The result is a very lightweight and transportable weapon.

<span class="mw-page-title-main">Space gun</span> Method of launching an object into outer space via a large gun or cannon

A space gun, sometimes called a Verne gun because of its appearance in From the Earth to the Moon by Jules Verne, is a method of launching an object into space using a large gun- or cannon-like structure. Space guns could thus potentially provide a method of non-rocket spacelaunch. It has been conjectured that space guns could place satellites into Earth's orbit, and could also launch spacecraft beyond Earth's gravitational pull and into other parts of the Solar System by exceeding Earth's escape velocity of about 11.20 km/s. However, these speeds are too far into the hypersonic range for most practical propulsion systems and also would cause most objects to burn up due to aerodynamic heating or be torn apart by aerodynamic drag. Therefore, a more likely future use of space guns would be to launch objects into Low Earth orbit, at which point attached rockets could be fired or the objects could be "collected" by maneuverable orbiting satellites.

<span class="mw-page-title-main">Light-gas gun</span> Gun designed to generate very high speed

The light-gas gun is an apparatus for physics experiments. It is a highly specialized gun designed to generate extremely high velocities. It is usually used to study high-speed impact phenomena, such as the formation of impact craters by meteorites or the erosion of materials by micrometeoroids. Some basic material research relies on projectile impact to create high pressure; such systems are capable of forcing liquid hydrogen into a metallic state.

<span class="mw-page-title-main">Accurizing</span> Process of improving the accuracy and precision of a gun

Accurizing is the process of improving the accuracy and precision of a gun.

<span class="mw-page-title-main">Non-rocket spacelaunch</span> Concepts for launch into space

Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.

<span class="mw-page-title-main">Potato cannon</span> Pipe-based cannon

A potato cannon is a pipe-based cannon that uses air pressure (pneumatic), or combustion of a flammable gas, to launch projectiles at high speeds. They are built to fire chunks of potato, as a hobby, or to fire other sorts of projectiles, for practical use. Projectiles or failing guns can be dangerous and result in life-threatening injuries, including cranial fractures, enucleation, and blindness if a person is hit.

<span class="mw-page-title-main">Caliber (artillery)</span> Internal diameter of a gun barrel

In artillery, caliber or calibre is the internal diameter of a gun barrel, or, by extension, a relative measure of the barrel length.

The high–low system is a design of cannon and anti-tank warfare launcher using a smaller high-pressure chamber to store propellant. It allows a much larger projectile to be launched without the heavy equipment usually needed for large caliber weapons. When the propellant is ignited, the higher pressure gases are bled out through vents at reduced pressure to a much larger low pressure chamber to push a projectile forward. The high-low system allows the weight of the weapon and its ammunition to be reduced significantly. Production cost and time are drastically lower than for standard cannon or other small-arm weapon systems firing a projectile of the same size and weight. It has a far more efficient use of the propellant, unlike earlier recoilless weapons, where most of the propellant is expended to the rear of the weapon to counter the recoil of the projectile being fired.

Quicklaunch is an inactive US company attempting to use a type of space gun to launch payloads into low Earth orbit. It is a university spin-off of the SHARP project which ended 2005.

A ram accelerator is a device for accelerating projectiles or just a single projectile to extremely high speeds using jet-engine-like propulsion cycles based on ramjet or scramjet combustion processes. It is thought to be possible to achieve non-rocket spacelaunch with this technology.

References

  1. 1 2 3 Wade, Mark. "SHARP at Encyclopedia Astronautica". Archived from the original on November 17, 2016. Retrieved 2018-09-26.
  2. 1 2 3 "The Jules Verne Gun". Popular Science. April 1998. Archived from the original on 2006-12-12. Retrieved 2009-09-03.