Supernetwork

Last updated
An example of route aggregation as a part of CIDR Route Aggreation example-en.svg
An example of route aggregation as a part of CIDR

A supernetwork, or supernet, is an Internet Protocol (IP) network that is formed by aggregation of multiple networks (or subnets) into a larger network. The new routing prefix for the aggregate network represents the constituent networks in a single routing table entry. The process of forming a supernet is called supernetting, prefix aggregation, route aggregation, or route summarization.

Contents

Supernetting within the Internet serves as a strategy to avoid fragmentation of the IP address space by using a hierarchical allocation system that delegates control of segments of address space to regional Internet registries. [1] This method facilitates regional route aggregation.

The benefits of supernetting are efficiencies gained in routers in terms of memory storage of route information and processing overhead when matching routes. Supernetting, however, can introduce interoperability issues and other risks. [2]

Overview

In IP networking terminology, a supernet is a block of contiguous subnetworks addressed as a single subnet from the perspective of the larger network. Supernets are always larger than their component networks. Supernetting is the process of aggregating routes to multiple smaller networks, thus saving storage space in the routing table, simplifying routing decisions and reducing route advertisements to neighboring gateways. Supernetting has helped address the increasing size of routing tables as the Internet has expanded.

Supernetting in large, complex networks can isolate topology changes from other routers. This can improve the stability of the network by limiting the propagation of routing changes in the event of a network link failure. If a router only advertises a summary route to the next router, then it does not need to advertise any changes to specific subnets within the summarized range. This can significantly reduce any unnecessary routing updates following a topology change. Hence, it increases the speed of convergence resulting in a more stable environment.

Protocol requirements

Supernetting requires the use of routing protocols that support Classless Inter-Domain Routing (CIDR). Interior Gateway Routing Protocol, Exterior Gateway Protocol and version 1 of the Routing Information Protocol (RIPv1) assume classful addressing, and therefore cannot transmit the subnet mask information required for supernetting.

Enhanced Interior Gateway Routing Protocol (EIGRP) supports CIDR. By default, EIGRP summarizes the routes within the routing table and forwards these summarized routes to its peers. Other routing protocols with CIDR support include RIPv2, Open Shortest Path First, EIGRP, IS-IS and Border Gateway Protocol.

Examples

A company that operates 150 accounting services in each of 50 districts has a router in each office connected with a Frame Relay link to its corporate headquarters. Without supernetting, the routing table on any given router might have to account for 150 routers in each of the 50 districts, or 7500 different networks. However, if a hierarchical addressing system is implemented with supernetting, then each district has a centralized site as an interconnection point. Each route is summarized before being advertised to other districts. Each router now only recognizes its own subnet and the other 49 summarized routes.

The determination of the summary route on a router involves the recognition of the number of highest-order bits that match all addresses. The summary route is calculated as follows. A router has the following networks in its routing table:

 192.168.98.0  192.168.99.0  192.168.100.0  192.168.101.0  192.168.102.0  192.168.105.0 

Firstly, the addresses are converted to binary format and aligned in a list:

AddressFirst OctetSecond OctetThird OctetFourth Octet
192.168.98.011000000101010000110001000000000
192.168.99.011000000101010000110001100000000
192.168.100.011000000101010000110010000000000
192.168.101.011000000101010000110010100000000
192.168.102.011000000101010000110011000000000
192.168.105.011000000101010000110100100000000

Secondly, the bits at which the common pattern of digits ends are located. These common bits are shown in red. Lastly, the number of common bits is counted. The summary route is found by setting the remaining bits to zero, as shown below. It is followed by a slash and then the number of common bits.

First OctetSecond OctetThird OctetFourth OctetAddressNetmask
11000000101010000110000000000000192.168.96.0/20

The summarized route is 192.168.96.0/20. The subnet mask is 255.255.240.0. This summarized route also contains networks that were not in the summarized group, namely, 192.168.96.0, 192.168.97.0, 192.168.103.0, 192.168.104.0, 192.168.106.0, 192.168.107.0, 192.168.108.0, 192.168.109.0, 192.168.110.0, and 192.168.111.0. It must be assured that the missing networks do not exist outside of this route.

In another example, an ISP is assigned a block of IP addresses by a regional Internet registry (RIR) of 172.1.0.0 to 172.1.255.255. The ISP might then assign subnetworks to each of their downstream clients, e.g., Customer A will have the range 172.1.1.0 to 172.1.1.255, Customer B would receive the range 172.1.2.0 to 172.1.2.255 and Customer C would receive the range 172.1.3.0 to 172.1.3.255, and so on. Instead of an entry for each of the subnets 172.1.1.x and 172.1.2.x, etc., the ISP could aggregate the entire 172.1.x.x address range and advertise the network 172.1.0.0/16, which would reduce the number of entries in the global routing table.

Risks

The following supernetting risks have been identified: [2]

See also

Related Research Articles

Interior Gateway Routing Protocol (IGRP) is a distance vector interior gateway protocol (IGP) developed by Cisco. It is used by routers to exchange routing data within an autonomous system.

An Internet Protocol address is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.

<span class="mw-page-title-main">IPv4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Classless Inter-Domain Routing is a method for allocating IP addresses for IP routing. The Internet Engineering Task Force introduced CIDR in 1993 to replace the previous classful network addressing architecture on the Internet. Its goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses.

<span class="mw-page-title-main">Border Gateway Protocol</span> Protocol for communicating routing information on the Internet

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. BGP is classified as a path-vector routing protocol, and it makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

<span class="mw-page-title-main">Routing table</span> Data table stored in a router that lists the routes to network destinations

In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. In 2013, Cisco permitted other vendors to freely implement a limited version of EIGRP with some of its associated features such as High Availability (HA), while withholding other EIGRP features such as EIGRP stub, needed for DMVPN and large-scale campus deployment. Information needed for implementation was published with informational status as RFC 7868 in 2016, which did not advance to Internet Standards Track level, and allowed Cisco to retain control of the EIGRP protocol.

<span class="mw-page-title-main">Subnet</span> Logical subdivision of an IP network

A subnetwork, or subnet, is a logical subdivision of an IP network. The practice of dividing a network into two or more networks is called subnetting.

<span class="mw-page-title-main">Classful network</span> Early system for organizing the IPv4 address space

A classful network is an obsolete network addressing architecture used in the Internet from 1981 until the introduction of Classless Inter-Domain Routing (CIDR) in 1993. The method divides the IP address space for Internet Protocol version 4 (IPv4) into five address classes based on the leading four address bits. Classes A, B, and C provide unicast addresses for networks of three different network sizes. Class D is for multicast networking and the class E address range is reserved for future or experimental purposes.

In Internet networking, a private network is a computer network that uses a private address space of IP addresses. These addresses are commonly used for local area networks (LANs) in residential, office, and enterprise environments. Both the IPv4 and the IPv6 specifications define private IP address ranges.

Longest prefix match refers to an algorithm used by routers in Internet Protocol (IP) networking to select an entry from a routing table.

A default gateway is the node in a computer network using the Internet protocol suite that serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet.

In computer networking, the default route is a configuration of the Internet Protocol (IP) that establishes a forwarding rule for packets when no specific address of a next-hop host is available from the routing table or other routing mechanisms.

A gateway is a piece of networking hardware or software used in telecommunications networks that allows data to flow from one discrete network to another. Gateways are distinct from routers or switches in that they communicate using more than one protocol to connect multiple networks and can operate at any of the seven layers of the OSI model.

IP networks are divided logically into subnetworks. Computers in the same subnetwork have the same address prefix. For example, in a typical home network with legacy Internet Protocol version 4, the network prefix would be something like 192.168.1.0/24, as expressed in CIDR notation.

route (command) Computer operating system command

In computing, route is a command used to view and manipulate the IP routing table in Unix-like and Microsoft Windows operating systems and also in IBM OS/2 and ReactOS. Manual manipulation of the routing table is characteristic of static routing.

IP routing is the application of routing methodologies to IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained from routing protocols to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks.

References

Notes
  1. RFC 1338, Supernetting: an Address Assignment and Aggregation Strategy, V. Fuller, T. Li, J. Yu, K. Varadhan (June 1992)
  2. 1 2 Franck Le; Geoffrey G. Xie; Hui Zhang (2011). "On Route Aggregation" (PDF). ACM . Retrieved 2013-01-10.
  3. Antonio Maciá (13 February 2012). "EIGRP Summarization Issues" . Retrieved 2020-07-31.
Bibliography