The swish function is a family of mathematical function defined as follows:
where can be constant (usually set to 1) or trainable.
The swish family was designed to smoothly interpolate between a linear function and the ReLU function.
When considering positive values, Swish is a particular case of doubly parameterized sigmoid shrinkage function defined in [2] : Eq 3 . Variants of the swish function include Mish. [3]
For β = 0, the function is linear: f(x) = x/2.
For β = 1, the function is the Sigmoid Linear Unit (SiLU).
With β → ∞, the function converges to ReLU.
Thus, the swish family smoothly interpolates between a linear function and the ReLU function. [1]
Since , all instances of swish have the same shape as the default , zoomed by . One usually sets . When is trainable, this constraint can be enforced by , where is trainable.
Because , it suffices to calculate its derivatives for the default case.so is odd.so is even.
SiLU was first proposed alongside the GELU in 2016, [4] then again proposed in 2017 as the Sigmoid-weighted Linear Unit (SiL) in reinforcement learning. [5] [1] The SiLU/SiL was then again proposed as the SWISH over a year after its initial discovery, originally proposed without the learnable parameter β, so that β implicitly equaled 1. The swish paper was then updated to propose the activation with the learnable parameter β.
In 2017, after performing analysis on ImageNet data, researchers from Google indicated that using this function as an activation function in artificial neural networks improves the performance, compared to ReLU and sigmoid functions. [1] It is believed that one reason for the improvement is that the swish function helps alleviate the vanishing gradient problem during backpropagation. [6]
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.
A logistic function or logistic curve is a common S-shaped curve with the equation
A sigmoid function refers specifically to a function whose graph follows the logistic function. It is defined by the formula:
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails. The logistic distribution is a special case of the Tukey lambda distribution.
The information bottleneck method is a technique in information theory introduced by Naftali Tishby, Fernando C. Pereira, and William Bialek. It is designed for finding the best tradeoff between accuracy and complexity (compression) when summarizing a random variable X, given a joint probability distribution p(X,Y) between X and an observed relevant variable Y - and self-described as providing "a surprisingly rich framework for discussing a variety of problems in signal processing and learning".
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.
The softmax function, also known as softargmax or normalized exponential function, converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes.
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, the logistic (sigmoid) function used in the 2012 speech recognition model developed by Hinton et al, the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model.
In thermal quantum field theory, the Matsubara frequency summation is a technique used to simplify calculations involving Euclidean path integrals.
In the context of artificial neural networks, the rectifier or ReLU activation function is an activation function defined as the non-negative part of its argument:
Mixture of experts (MoE) is a machine learning technique where multiple expert networks (learners) are used to divide a problem space into homogeneous regions. It differs from ensemble techniques in that for MoE, typically only one or a few expert models are run for each input, whereas in ensemble techniques, all models are run on every input.
A residual neural network is a deep learning architecture in which the weight layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition and won that year's ImageNet Large Scale Visual Recognition Challenge.
Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.
A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.
In machine learning, normalization is a statistical technique with various applications. There are mainly two forms of normalization, data normalization and activation normalization. Data normalization, or feature scaling, is a general technique in statistics, and it includes methods that rescale input data so that they have well-behaved range, mean, variance, and other statistical properties. Activation normalization is specific to deep learning, and it includes methods that rescale the activation of hidden neurons inside a neural network.
In neural networks, a pooling layer is a kind of network layer that downsamples and aggregates information that is dispersed among many vectors into fewer vectors. It has several uses. It removes redundant information, reducing the amount of computation and memory required, makes the model more robust to small variations in the input, and increases the receptive field of neurons in later layers in the network.
In neural networks, the gating mechanism is an architectural motif for controlling the flow of activation and gradient signals. They are most prominently used in recurrent neural networks (RNNs), but have also found applications in other architectures.
In machine learning and deep learning, weight initialization describes the initial step in creating a neural network. A neural network contains trainable parameters that are modified during training. Before training, these need to be assigned initial values. This assignment step is weight initialization.