Synchronous transmit-receive

Last updated

Synchronous transmit-receive (STR) was an early IBM character-oriented communications protocol which preceded Bisync. STR was point-to-point only, and employed a four-of-eight transmission code, communicating at up to 5100 characters per second over half-duplex or full-duplex communication lines.

Contents

The IBM 1009 Data Transmission Unit, the IBM 1130 Synchronous Communications Adapter, the IBM System/360 model 20 Communications Adapter, and the IBM 2701 Data Transmission Unit provided host computer support for STR.

The IBM 7701, the IBM 7702 Magnetic Tape Transmission Terminal, the IBM 1013 Card Transmission Terminal, and the IBM 7710 and IBM 7711 Data Communication Units were among the remote devices supported by STR. [1]

STR was still supported as of 1972, [1] although it had generally faded from use.

Four-of-eight code

The four-of-eight code was a 64 character set plus six control characters, encoded in eight bits. Like other kinds of 6b/8b encoding, exactly four bits of each character were one bits there are 70 such possible bit combinations.

Data codes

This is the four-of-eight code. The first column of graphics is for the 7701, [2] where no graphic is shown the code is unassigned. Plus zero and minus zero had distinct values for many machines, and are shown as +0 and -0. The second column of graphics is for the 1130 SCA, graphics are shown only if different from the 7701, mostly characters from the EBCDIC character set which were not present in BCD.

Graphic1130 Graphicfour-of-eight
code
Hex 
   N X O R  8 4 2 1
space 1 1 1 1  0 0 0 0F0
+0¢ 0 1 1 0  1 0 1 06A
.  1 0 0 0  1 0 1 18B
< 0 1 1 0  1 1 0 06C
 ( 0 1 0 1  0 1 1 056
 + 0 0 1 1  0 1 1 036
group mark  1 0 0 0  1 1 0 18D
&  1 0 0 0  1 1 1 08E
-0 ! 1 1 0 0  1 0 1 0CA
$  0 1 0 0  1 0 1 14B
*  1 1 0 0  1 1 0 0CC
 ) 0 1 0 1  1 1 0 05C
  ; 0 0 1 1  1 1 0 03C
Δ¬ 0 1 0 0  1 1 0 14D
-  0 1 0 0  1 1 1 04E
/  1 0 1 1  0 0 0 1B1
,  0 0 1 0  1 0 1 12B
 %  1 0 1 0  1 1 0 0AC
word separator_ 0 1 0 1  1 0 1 05A
 > 0 0 1 1  1 0 1 03A
block mark ? 0 0 1 0  1 1 0 12D
space : 0 0 1 1  1 1 0 02E
#  0 0 0 1  1 0 1 11B
@  1 0 0 1  1 1 0 09C
 ' 0 0 0 0  1 1 1 10F
 = 0 0 0 1  1 1 1 01E
tape mark" 0 0 0 1  1 1 0 11D
A  0 1 1 1  0 0 0 171
B  0 1 1 1  0 0 1 072
C  0 1 1 0  0 0 1 163
D  0 1 1 1  0 1 0 074
E  0 1 1 0  0 1 0 165
F  0 1 1 0  0 1 1 066
G  1 0 0 0  0 1 1 187
H  0 1 1 1  1 0 0 078
I  0 1 1 0  1 0 0 169
J  1 1 0 1  0 0 0 1D1
K  1 1 0 1  0 0 1 0D2
L  1 1 0 0  0 0 1 1C3
M  1 1 0 1  0 1 0 0D4
N  1 1 0 0  0 1 0 1C5
O  1 1 0 0  0 1 1 0C6
P  0 1 0 0  0 1 1 147
Q  1 1 0 1  1 0 0 0D8
R  1 1 0 0  1 0 0 1C9
record mark   1 0 1 0  1 0 1 0AA
S  1 0 1 1  0 0 1 0B2
T  1 0 1 0  0 0 1 1A3
U  1 0 1 1  0 1 0 0B4
V  1 0 1 0  0 1 0 1A5
W  1 0 1 0  0 1 1 0A6
X  0 0 1 0  0 1 1 127
Y  1 0 1 1  1 0 0 0B8
Z  1 0 1 0  1 0 0 1A9
0  1 0 0 1  1 0 1 09A
1  1 1 1 0  0 0 0 1E1
2  1 1 1 0  0 0 1 0E2
3  1 0 0 1  0 0 1 193
4  1 1 1 0  0 1 0 0E4
5  1 0 0 1  0 1 0 195
6  1 0 0 1  0 1 1 096
7  0 0 0 1  0 1 1 117
8  1 1 1 0  1 0 0 0E8
9  1 0 0 1  1 0 0 199

Control codes

These are the synchronous transmit-receive control codes. Control characters were reserved; there was no provision for transparent operation.

Graphic
 
four-of-eight
code
Hex 
  N X O R  8 4 2 1
Idle 0 0 1 1  1 0 0 139
Start of Record 1
or Acknowledge 1
(SOR1 or ACK1)
 0 1 0 1  0 0 1 153
Start of Record 2
or Acknowledge 2
(SOR2 or ACK2 )
 0 0 1 1  0 0 1 133
Transmit Leader (TL) 0 0 1 1  0 1 0 135
Control Leader (CL) 0 1 0 1  0 1 0 155
End of Transmission (EOT)1 0 1 0 1  1 0 1 05A
Inquiry or Error (INQ or ERR) 0 1 0 1  1 0 0 159
Telephone1 0 1 0 1  1 1 0 05C
Group Mark1 1 0 0 0  1 1 0 18D
Longitudinal Redundancy Check (LRS) - - - -  - - - -
1also used as a data character

Longitudinal Redundancy Check

The Longitudinal Redundancy Check byte was the only character that could have other than four one bits. This byte contains a zero in each bit position where the data record contained an even number of one bits, and one where an odd number. "Idle characters and control sequences are not included in the LRS. [1] :p.174

Line control

When no data is being transmitted the line is maintained in synchronize mode a terminal transmits idle characters for approximately 1.3 seconds followed by end-of-idle sequence (CL Idle). It then listens for the same sequence for approximately three seconds. For four wire operation, when data is being transmitted the other wire pair is maintained in synchronize mode. At least one idle character is sent before each transmission.

Ownership of the line is established by the transmitting station sending an inquiry sequence (TL INQ). The receiving terminal then responds with acknowledge (CL ACK2). Following this initiation sequence the transmitting terminal sends SOR1 TL followed by the first block of data. The data is terminated by an end-of-transmittal-record (TL LRS). The receiving terminal replies with CL ACK1, or CL ERR if the longitudinal redundancy check indicates a transmission error. This process continues with even/odd SOR and ACK, until the sending terminal has transmitted all the data. It sends the end-of-transmission sequence (CL EOT). The receiving terminal responds CL EOT and re-enters synchronize mode.

Related Research Articles

In telecommunications, asynchronous communication is transmission of data, generally without the use of an external clock signal, where data can be transmitted intermittently rather than in a steady stream. Any timing required to recover data from the communication symbols is encoded within the symbols.

In computing and telecommunication, a control character or non-printing character (NPC) is a code point in a character set, that does not represent a written symbol. They are used as in-band signaling to cause effects other than the addition of a symbol to the text. All other characters are mainly printing, printable, or graphic characters, except perhaps for the "space" character.

In telecommunication, an end-of-Transmission character (EOT) is a transmission control character. Its intended use is to indicate the conclusion of a transmission that may have included one or more texts and any associated message headings.

Non-return-to-zero

In telecommunication, a non-return-to-zero (NRZ) line code is a binary code in which ones are represented by one significant condition, usually a positive voltage, while zeros are represented by some other significant condition, usually a negative voltage, with no other neutral or rest condition.

Universal asynchronous receiver-transmitter Computer hardware device

A universal asynchronous receiver-transmitter is a computer hardware device for asynchronous serial communication in which the data format and transmission speeds are configurable. It sends data bits one by one, from the least significant to the most significant, framed by start and stop bits so that precise timing is handled by the communication channel. The electric signaling levels are handled by a driver circuit external to the UART. Two common signal levels are RS-232, a 12-volt system, and RS-485, a 5-volt system.

High-Level Data Link Control (HDLC) is a bit-oriented code-transparent synchronous data link layer protocol developed by the International Organization for Standardization (ISO). The standard for HDLC is ISO/IEC 13239:2002.

Asynchronous serial communication is a form of serial communication in which the communicating endpoints' interfaces are not continuously synchronized by a common clock signal. Instead of a common synchronization signal, the data stream contains synchronization information in form of start and stop signals, before and after each unit of transmission, respectively. The start signal prepares the receiver for arrival of data and the stop signal resets its state to enable triggering of a new sequence.

Synchronous Data Link Control (SDLC) is a computer communications protocol. It is the layer 2 protocol for IBM's Systems Network Architecture (SNA). SDLC supports multipoint links as well as error correction. It also runs under the assumption that an SNA header is present after the SDLC header. SDLC was mainly used by IBM mainframe and midrange systems; however, implementations exist on many platforms from many vendors. The use of SDLC is becoming more and more rare, mostly replaced by IP-based protocols or being tunneled through IP. In the United States, SDLC can be found in traffic control cabinets.

In telecommunications, 8b/10b is a line code that maps 8-bit words to 10-bit symbols to achieve DC-balance and bounded disparity, and at the same time provide enough state changes to allow reasonable clock recovery. This means that the difference between the counts of ones and zeros in a string of at least 20 bits is no more than two, and that there are not more than five ones or zeros in a row. This helps to reduce the demand for the lower bandwidth limit of the channel necessary to transfer the signal.

XMODEM is a simple file transfer protocol developed as a quick hack by Ward Christensen for use in his 1977 MODEM.ASM terminal program. It allowed users to transmit files between their computers when both sides used MODEM. Keith Petersen made a minor update to always turn on "quiet mode", and called the result XMODEM.

A universal synchronous and asynchronous receiver-transmitter (USART) is a type of a serial interface device that can be programmed to communicate asynchronously or synchronously. See universal asynchronous receiver-transmitter (UART) for a discussion of the asynchronous capabilities of these devices.

IEEE 1355

IEEE Standard 1355-1995, IEC 14575, or ISO 14575 is a data communications standard for Heterogeneous Interconnect (HIC).

Binary Synchronous Communication is an IBM character-oriented, half-duplex link protocol, announced in 1967 after the introduction of System/360. It replaced the synchronous transmit-receive (STR) protocol used with second generation computers. The intent was that common link management rules could be used with three different character encodings for messages. Six-bit Transcode looked backwards to older systems; USASCII with 128 characters and EBCDIC with 256 characters looked forward. Transcode disappeared very quickly but the EBCDIC and USASCII dialects of Bisync continued in use.

Synchronous Idle (SYN) is the ASCII control character 22 (0x16), represented as ^V in caret notation. In EBCDIC the corresponding character is 50 (0x32). Synchronous Idle is used in some synchronous serial communication systems such as Teletype machines or the Binary Synchronous (Bisync) protocol to provide a signal from which synchronous correction may be achieved between data terminal equipment, particularly when no other character is being transmitted.

ISO 1745:1975 Information processing – Basic mode control procedures for data communication systems is an early ISO standard defining a Telex-oriented communications protocol that used the non-printable ASCII transmission control characters SOH, STX, ETX, EOT, ENQ (Enquiry), ACK (Acknowledge), DLE, NAK, SYN, and ETB.

In data networking, telecommunications, and computer buses, an acknowledgment (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgment, or receipt of message, as part of a communications protocol. The negative-acknowledgment is a signal that is sent to reject a previously received message or to indicate some kind of error. Acknowledgments and negative acknowledgments inform a sender of the receiver's state so that it can adjust its own state accordingly.

270x is a generic name for a family of IBM non-programmable communications controllers used with System/360 and System/370 computers.

The IBM 7701 Magnetic Tape Transmission Terminal was a communications device announced by IBM in 1960. It was designed to transfer the contents of a reel of magnetic tape over a leased or dial telephone circuit.

Synchronous serial communication describes a serial communication protocol in which "data is sent in a continuous stream at constant rate."

Hazeltine 1500

The Hazeltine 1500 was a popular smart terminal introduced by Hazeltine Corporation in April 1977 at a price of $1,125. Using a microprocessor and semiconductor random access memory, it implemented the basic features of the earlier Hazeltine 2000 in a much smaller and less expensive system. It came to market just as the microcomputer revolution was taking off, and the 1500 was very popular among early hobbyist users.

References

  1. 1 2 3 IBM Corporation (1972). IBM 1130 Functional Characteristics (PDF). pp. 171–172.
  2. IBM Corporation (1961). Reference Manual IBM 7701 Magnetic Tape Transmission Terminal (PDF). p. 8.