TCP sequence prediction attack

Last updated

A TCP sequence prediction attack is an attempt to predict the sequence number used to identify the packets in a TCP connection, which can be used to counterfeit packets. [1]

Contents

The attacker hopes to correctly guess the sequence number to be used by the sending host. If they can do this, they will be able to send counterfeit packets to the receiving host which will seem to originate from the sending host, even though the counterfeit packets may in fact originate from some third host controlled by the attacker. One possible way for this to occur is for the attacker to listen to the conversation occurring between the trusted hosts, and then to issue packets using the same source IP address. By monitoring the traffic before an attack is mounted, the malicious host can figure out the correct sequence number. After the IP address and the correct sequence number are known, it is basically a race between the attacker and the trusted host to get the correct packet sent. One common way for the attacker to send it first is to launch another attack on the trusted host, such as a denial-of-service attack. Once the attacker has control over the connection, they are able to send counterfeit packets without getting a response. [2]

If an attacker can cause delivery of counterfeit packets of this sort, they may be able to cause various sorts of mischief, including the injection into an existing TCP connection of data of the attacker's choosing, and the premature closure of an existing TCP connection by the injection of counterfeit packets with the RST bit set, a TCP reset attack.

Theoretically, other information such as timing differences or information from lower protocol layers could allow the receiving host to distinguish authentic TCP packets from the sending host and counterfeit TCP packets with the correct sequence number sent by the attacker. If such other information is available to the receiving host, if the attacker can also fake that other information, and if the receiving host gathers and uses the information correctly, then the receiving host may be fairly immune to TCP sequence prediction attacks. Usually, this is not the case, so the TCP sequence number is the primary means of protection of TCP traffic against these types of attack.

Another solution to this type of attack is to configure any router or firewall to not allow packets to come in from an external source but with an internal IP address. Although this does not fix the attack, it will prevent the potential attacks from reaching their targets. [2]

See also

Related Research Articles

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address, for example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.

In computer networking, Point-to-Point Protocol (PPP) is a data link layer communication protocol between two routers directly without any host or any other networking in between. It can provide loop detection authentication, transmission encryption, and data compression.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

<span class="mw-page-title-main">IP address spoofing</span> Creating IP packets using a false IP address

In computer networking, IP address spoofing or IP spoofing is the creation of Internet Protocol (IP) packets with a false source IP address, for the purpose of impersonating another computing system.

In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).

The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.

<span class="mw-page-title-main">Network address translation</span> Protocol facilitating connection of one IP address space to another

Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network. FTP is built on a client–server model architecture using separate control and data connections between the client and the server. FTP users may authenticate themselves with a plain-text sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it. For secure transmission that protects the username and password, and encrypts the content, FTP is often secured with SSL/TLS (FTPS) or replaced with SSH File Transfer Protocol (SFTP).

<span class="mw-page-title-main">Transport layer</span> Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

In computer networks, a tunneling protocol is a communication protocol which allows for the movement of data from one network to another. It involves allowing private network communications to be sent across a public network through a process called encapsulation.

NetBIOS over TCP/IP is a networking protocol that allows legacy computer applications relying on the NetBIOS API to be used on modern TCP/IP networks.

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.

A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.

In computer networking, a port or port number is a number assigned to uniquely identify a connection endpoint and to direct data to a specific service. At the software level, within an operating system, a port is a logical construct that identifies a specific process or a type of network service. A port at the software level is identified for each transport protocol and address combination by the port number assigned to it. The most common transport protocols that use port numbers are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP); those port numbers are 16-bit unsigned numbers.

In networking, a black hole, also known as a block hole, refers to a place in the network where incoming or outgoing traffic is silently discarded, without informing the source that the data did not reach its intended recipient.

SYN cookie is a technique used to resist SYN flood attacks. The technique's primary inventor Daniel J. Bernstein defines SYN cookies as "particular choices of initial TCP sequence numbers by TCP servers." In particular, the use of SYN cookies allows a server to avoid dropping connections when the SYN queue fills up. Instead of storing additional connections, a SYN queue entry is encoded into the sequence number sent in the SYN+ACK response. If the server then receives a subsequent ACK response from the client with the incremented sequence number, the server is able to reconstruct the SYN queue entry using information encoded in the TCP sequence number and proceed as usual with the connection.

TCP reset attack, also known as a forged TCP reset or spoofed TCP reset, is a way to terminate a TCP connection by sending a forged TCP reset packet. This tampering technique can be used by a firewall or abused by a malicious attacker to interrupt Internet connections.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.

References

  1. Bellovin, S.M. (1 April 1989). "Security Problems in the TCP/IP Protocol Suite". ACM SIGCOMM Computer Communication Review. Retrieved 6 May 2011.
  2. 1 2 "TCP Sequence Prediction Attack".