Target Malaria

Last updated

Target Malaria is a not-for-profit international research consortium that aims to co-develop and share novel genetic technologies to help control malaria in Africa. The consortium brings together research institutes and universities from Africa, Europe and North America.

Contents

The project is working to develop genetically modified mosquitoes that carry a trait that would result in the reduction of malaria mosquito populations. Reducing the number of mosquitoes that can transmit the malaria parasite would lead to fewer malaria infections. The project’s novel genetic approach aims to be complementary to existing malaria control interventions. The project’s research is still at an early stage, and even though results so far have been promising, there is a long way to go.[ citation needed ]

The malaria burden in Africa

Every year, malaria kills half a million people and infects over 200 million people; a third of the world is at risk of contracting this disease transmitted by mosquitoes. The majority of the victims are children under the age of five living in Africa. While all regions in the world have made tremendous progress towards control and elimination of malaria, Africa accounts for 94% of malaria deaths in the world. [1]

New vector control tools

According to the World Malaria Report 2020 [2] published by the World Health Organization, despite tremendous progress in reducing malaria around the world, since 2015 this progress has slowed, stalling in the last three years. Current interventions, such as drug treatments, bed nets and insecticide spraying, have helped to lower the burden of malaria but have not been able to eradicate the disease in many countries. WHO warns that the global response to malaria has reached a “crossroads”: if new tools are not found, key targets of WHO’s global malaria strategy will likely be missed. [3]

Gene drive for malaria control

Target Malaria is adapting a natural mechanism called a gene drive. The genetically modified mosquitoes carry a trait that targets their ability to reproduce. Gene drive ensures this modification is inherited at a higher rate than it normally would, thus reducing the fertility of the mosquito populations over time and ultimately their numbers. Gene drive technologies hold the promise of being a self-sustaining and cost-effective method to help in the fight against malaria by reducing the population of malaria mosquitoes. The WHO stated [4] in its Position Statement on the evaluation and use of GMMs for the control of vector-borne diseases published on October 14, 2020: "In the spirit of fostering innovation, WHO takes the position that all potentially beneficial new technologies, including GMMs, should be investigated to determine whether they could be useful in the continued fight against diseases of public health concern. Such research should be conducted in steps and be supported by clear governance mechanisms to evaluate the health, environmental and ecological implications." [5]

History and funding

Target Malaria started as a university-based research programme in 2005. Since 2012, the project has expanded to include scientists, social scientists, stakeholder engagement experts, regulatory affairs experts, project management teams, risk assessment specialists and communications professionals from Africa, Europe, and North America. The project receives core funding from the Bill and Melinda Gates Foundation. [6] [7] [8] [9] [10] and from the Open Philanthropy Project Fund, an advised fund of Silicon Valley Community Foundation. Individual labs also received additional funding from a variety of sources to support their work, including but not limited to: DEFRA, The European Commission, MRC, NIH, Uganda Ministry of Health, Uganda National Council for Science & Technology, Wellcome Trust and the World Bank.[ citation needed ]

List of partner institutions

See also

Related Research Articles

<span class="mw-page-title-main">DDT</span> Organochloride known for its insecticidal properties

Dichlorodiphenyltrichloroethane, commonly known as DDT, is a colorless, tasteless, and almost odorless crystalline chemical compound, an organochloride. Originally developed as an insecticide, it became infamous for its environmental impacts. DDT was first synthesized in 1874 by the Austrian chemist Othmar Zeidler. DDT's insecticidal action was discovered by the Swiss chemist Paul Hermann Müller in 1939. DDT was used in the second half of World War II to limit the spread of the insect-borne diseases malaria and typhus among civilians and troops. Müller was awarded the Nobel Prize in Physiology or Medicine in 1948 "for his discovery of the high efficiency of DDT as a contact poison against several arthropods". The WHO's anti-malaria campaign of the 1950s and 1960s relied heavily on DDT and the results were promising, though there was a resurgence in developing countries afterwards.

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects humans and other vertebrates. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.

<i>Anopheles</i> Genus of mosquito

Anopheles is a genus of mosquito first described by J. W. Meigen in 1818. Its members are sometimes called nail mosquitoes or marsh mosquitoes. Many are vectors of the parasite Plasmodium, which causes malaria in birds, reptiles, and mammals including humans. Anopheles gambiae is the best-known species, as it transmits one of the most dangerous human malarial parasites, Plasmodium falciparum. No other mosquito genus is a vector of human malaria.

One of the greatest challenges facing the builders of the Panama Canal was dealing with the tropical diseases rife in the area. The health measures taken during the construction contributed greatly to the success of the canal's construction. These included general health care, the provision of an extensive health infrastructure, and a major program to eradicate disease-carrying mosquitoes from the area.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<span class="mw-page-title-main">Mosquito control</span> Efforts to reduce damage from mosquitoes

Mosquito control manages the population of mosquitoes to reduce their damage to human health, economies, and enjoyment. Mosquito control is a vital public-health practice throughout the world and especially in the tropics because mosquitoes spread many diseases, such as malaria and the Zika virus.

<i>Anopheles gambiae</i> Species of mosquito

The Anopheles gambiae complex consists of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles. The complex was recognised in the 1960s and includes the most important vectors of malaria in sub-Saharan Africa, particularly of the most dangerous malaria parasite, Plasmodium falciparum. It is one of the most efficient malaria vectors known. The An. gambiae mosquito additionally transmits Wuchereria bancrofti which causes lymphatic filariasis, a symptom of which is elephantiasis.

Sir Richard George Andrew Feachem, KBE, FREng is professor of global health at both the University of California, San Francisco, and the University of California, Berkeley, and director of the Global Health Group at UCSF Global Health Sciences. He is also a visiting professor at the University of London and an honorary professor at the University of Queensland.

<span class="mw-page-title-main">Health in Nigeria</span> Overview of health in Nigeria

In Nigeria, there has been a major progress in the improvement of health since 1950. Although lower respiratory infections, neonatal disorders and HIV/AIDS have ranked the topmost causes of deaths in Nigeria, in the case of other diseases such as monkeypox, polio, malaria and tuberculosis, progress has been achieved. Among other threats to health are malnutrition, pollution and road traffic accidents. In 2020, Nigeria had the highest number of cases of COVID-19 in Africa.

<span class="mw-page-title-main">Disease vector</span> Agent that carries and transmits an infectious pathogen into another living organism

In epidemiology, a disease vector is any living agent that carries and transmits an infectious pathogen such as a parasite or microbe, to another living organism. Agents regarded as vectors are mostly blood-sucking insects such as mosquitoes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected the stomach tissue of a mosquito.

<span class="mw-page-title-main">Eradication of infectious diseases</span> Elimination of a disease from all hosts

The eradication of infectious diseases is the reduction of the prevalence of an infectious disease in the global host population to zero.

<span class="mw-page-title-main">World Malaria Day</span> International observance, 25 April

World Malaria Day (WMD) is an international observance commemorated every year on 25 April and recognizes global efforts to control malaria. Globally, 3.3 billion people in 106 countries are at risk of malaria. In 2012, malaria caused an estimated 627,000 deaths, mostly among African children. Asia, Latin America, and to a lesser extent the Middle East and parts of Europe are also affected.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

<span class="mw-page-title-main">Gene drive</span> Way to propagate genes throughout a population

A gene drive is a natural process and technology of genetic engineering that propagates a particular suite of genes throughout a population by altering the probability that a specific allele will be transmitted to offspring. Gene drives can arise through a variety of mechanisms. They have been proposed to provide an effective means of genetically modifying specific populations and entire species.

Sanaria is a biotechnology company developing vaccines protective against malaria and other infectious diseases as well as related products for use in malaria research. Sanaria's vaccines are based on the use of the sporozoite (SPZ) stage of the malaria parasite, Plasmodium, as an immunogen, and as a platform technology for liver-vectored gene delivery. SPZ are normally introduced into humans by mosquito bite where they migrate to the liver and further develop to liver stages, and eventually back into the blood stream where the parasite infects red blood cells (RBC) and causes malaria. Plasmodium falciparum is the species responsible for more than 95% deaths caused by malaria. The WHO estimates there were 249 million clinical cases and 608,000 deaths in 2022 alone.

<span class="mw-page-title-main">Andrea Crisanti (scientist)</span> Italian microbiologist and politician

Andrea Crisanti is an Italian full professor of microbiology at the University of Padua and politician. He previously was professor of Molecular Parasitology at Imperial College London. He is best known for the development of genetically manipulated mosquitoes with the objective to interfere with either their reproductive rate or the capability to transmit diseases such as malaria.

Dr. Winnie Mpanju-Shumbusho is a Tanzanian paediatrician and public health leader who until December 31, 2015, served as World Health Organization (WHO) Assistant Director General for HIV/AIDS, Tuberculosis, Malaria and Neglected Tropical Diseases based in Geneva, Switzerland. From 2016 to 2019, she served as board chair of RBM Partnership To End Malaria. Before joining WHO in 1999, Mpanju-Shumbusho was Director General of The East, Central and Southern African Health Community (ECSA-HC) formerly known as the Commonwealth Regional Health Community for East, Central and Southern Africa (CRHC-ECSA).

Heather Margaret Ferguson FRSE, Professor of Medical Entomology and Disease Ecology, at Glasgow University; a specialist in researching mosquito vectors that spread malaria, in global regions where this is endemic, aiming to manage and control a disease which the World Health Organization estimates killed over 400,000 people in 2020. Ferguson co-chairs the WHO Vector Control Advisory Group and was elected as a Fellow of the Royal Society of Edinburgh in 2021.

Nora J. Besansky is an American molecular biologist. She is the Martin J. Gillen Professor of Biological Sciences at the University of Notre Dame. In 2020, Besansky was elected a Member of the National Academy of Sciences for being an expert in the genomics of malaria vectors.

Fred Newton Binka is a public health physician and researcher from Ghana. He serves as a distinguished professor of clinical epidemiology at the University of Health and Allied Sciences (UHAS) in Ho, Ghana, and has previously coordinated the World Health Organization (WHO) Emergency Response to Artemisinin Resistance in the Greater Mekong sub-region of Asia. He is the founding vice-chancellor of UHAS and the former executive secretary of the INDEPTH Network, a global network of health and demographic surveillance systems. His work in malaria control and health development in Africa, particularly in the areas of vitamin A supplementation, insecticide-treated bed nets, and rotavirus and meningitis vaccination, has been impactful.

References

[11] [12] [13] [14] [15] [16] [17] [18]

  1. World Health Organization (WHO) World Malaria Report 2020 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
  2. (WHO) World Malaria Report 2020 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
  3. Feachem, R., Chen, I, Akbari, O. et al. Malaria eradication within a generation: ambitious, achievable, and necessary. The Lancet Commissions Volume 394, ISSUE 10203, P1056-1112 (2019) DOI link: https://doi.org/10.1016/S0140-6736(19)31139-0
  4. Feachem, R., Chen, I, Akbari, O. et al. Malaria eradication within a generation: ambitious, achievable, and necessary. The Lancet Commissions Volume 394, ISSUE 10203, P1056-1112 (2019) DOI link: https://doi.org/10.1016/S0140-6736(19)31139-0
  5. The Lancet Commission on Malaria Eradication within a generation: ambitious, achievable, and necessary https://www.thelancet.com/commissions/malaria-eradication
  6. World Health Organization (WHO) World Malaria Report 2020 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
  7. Feachem, R., Chen, I, Akbari, O. et al. Malaria eradication within a generation: ambitious, achievable, and necessary. The Lancet Commissions Volume 394, ISSUE 10203, P1056-1112 (2019) DOI link: https://doi.org/10.1016/S0140-6736(19)31139-0
  8. The Lancet Commission on Malaria Eradication within a generation: ambitious, achievable, and necessary https://www.thelancet.com/commissions/malaria-eradication
  9. World Health Organization (WHO) Position Statement Evaluation of genetically modified mosquitoes for the control of vector-borne diseases – 2020 https://www.who.int/publications/i/item/9789240013155
  10. The African Union’s report on “Gene Drives for malaria control and elimination in Africa” http://www.nepad.org/resource/gene-drives-malaria-control-and-elimination-africa-1
  11. World Health Organization (WHO) Vector Control Advisory Group, Fifth Meeting - 2017 http://apps.who.int/iris/bitstream/handle/10665/255824/WHO-HTM-NTD-VEM-2017.02-eng.pdf;jsessionid=2E6C156B21FBFC7C1C42ACB251E6DCD8?sequence=1
  12. World Health Organization (WHO) Global Technical Strategy for Malaria 2016-2030 – 2015 http://apps.who.int/iris/bitstream/handle/10665/176712/9789241564991_eng.pdf?sequence=1
  13. Jennifer Khan (8 January 2020) The Gene Drive Dilemma: We Can Alter Entire Species, but Should We? The New York Times Magazine
  14. Ryan, Jackson (6 February 2019). "The CRISPR machines that can wipe out entire species". CNET. Retrieved 20 February 2019
  15. Stein, Rob (20 February 2019). "Scientists Release Controversial Genetically Modified Mosquitoes In High-Security Lab". WBUR-FM. Retrieved 20 February 2019.
  16. Arie, Sophie (5 February 2019). "GM mosquitoes: playing with God or the only way to wipe out malaria?". The Daily Telegraph. Retrieved 20 February 2019.
  17. Zhang, Sarah (24 September 2018). "No One Knows Exactly What Would Happen If Mosquitoes Were to Disappear". The Atlantic. Retrieved 20 February 2019.
  18. Molteni, Megan (24 September 2018). "HERE'S THE PLAN TO END MALARIA WITH CRISPR-EDITED MOSQUITOES". Wired. Retrieved 20 February 2019.