Task switching (psychology)

Last updated

Task switching, or set-shifting, is an executive function that involves the ability to unconsciously shift attention between one task and another. In contrast, cognitive shifting is a very similar executive function, but it involves conscious (not unconscious) change in attention. Together, these two functions are subcategories of the broader cognitive flexibility concept.

Contents

Task switching allows a person to rapidly and efficiently adapt to different situations. It is often studied by cognitive and experimental psychologists, and can be tested experimentally using tasks like the Wisconsin Card Sorting Test. Deficits in task switching are commonly observed in patients with Parkinson's disease, [1] [2] and in those on the autism spectrum. [3] [4]

Background and history

Human behavior and cognition are characterized by the ability to adapt to a dynamic environment, whether in attention, action, or both. This ability to shift attention and action adaptively has been investigated in the laboratory since the first use of the task switching paradigm by Jersild (1927). [5] This paradigm examines the control processes that reconfigure mental resources for a change of task by requiring subjects to complete a set of simple, yet engaging interleaving operations that must be performed in an alternating or repeating sequence.

Switch cost

Performance on these tasks is disrupted when a switch from one task to another is required. This disruption is characterized by a slower performance and decrease in accuracy on a given task A on a trial that follows the performance of a different task B ("alternating" or "switch" trial) as opposed to performance on task A when it follows another trial of task A ("repetition" trial). The difference in accuracy and performance between a task repeat (A-A) and a task switch (A-B) is known as the switch cost. The switch cost remains even when there is ample warning of an upcoming switch, thus it is thought to reflect the functioning of numerous executive control processes ranging from attention shifting, goal retrieval, task set reconfiguration processes, and inhibition of prior task set.

Rogers and Monsell (1995) alternating-task procedure

This paradigm assumed that processing is the same on repetition and alternation trials but for the process of switching. Rogers and Monsell (1995) [6] suggested that alternation trials place more demands on working memory because subjects must remember two tasks on alternation trials, but only one on repetition trials. To overcome these problems, the alternating-runs procedure was introduced in which subjects alternate between short runs of different tasks (e.g., AABBAABB). Repetitions occur within runs (e.g., AA, BB), and alternations occur between runs (e.g., AB, BA). Memory load and the requirement for monitoring is the same for repetitions and alternations.

Task-set

A task set is defined as an effective intention to perform a task, accomplished by configuring one's mental state (e.g. attention) to be in accordance with the specific operations demanded by the task. Tasks that have been used to define these task sets include: categorization of numbers, letters, or symbols; identification of colors or words (e.g., using Stroop effect stimuli); location judgments; semantic and episodic memory tasks; and arithmetic problems.

Theories

Executive control of processing

Task-set reconfiguration

This theory assumes that once the task set is implemented, it stays in a given state of activation until it has to be changed, such as when a new task is presented. [7] Consequently, proponents argue, switch costs arise from an endogenous, executive control process that reconfigures the cognitive system to implement the relevant task set for task alternations. [6]

Automatic processes

Task-set inertia

To achieve behavioral stability in the face of interference, strongly activated task sets are needed. However, strongly activated task sets should also be particularly difficult to eliminate. [8] Consequently, task sets persist over time and interfere proactively with the establishment of new task set configurations (see proactive interference). This residual activation of task sets in memory from the recent performance of a task can contribute to automatic influences on performing a new task beyond voluntary control. For example, it has been proposed that less-practiced tasks require more support in memory which will result in greater task set inertia and thus can be expected to produce more proactive interference resulting in larger switch costs when switching away from the less-practiced task. Future research must determine whether active or passive processes overcome task-set inertia. [9]

Task-set inhibition

Asserts that switching between tasks requires the just-completed task to be suppressed to allow a new task to be completed. Support for the theory comes from research which has observed larger response times when returning to a task after an intermediate task than when completing three, or more, different tasks in a row—strong evidence against activation only theories. [8] For example, for tasks A, B, and C the response times for the third task will be slower in the case of an A-B-A sequence than a C-B-A sequence. In a series of experiments it was shown that this inhibitory process is not the result of priming so it is not an automatic process. Incomplete inhibition is thought to be responsible for the residual costs that occur even after long cue-stimulus intervals. [8]

Task-set priming

Most task-switching experiments use the same stimuli for both tasks (e.g. pictures for location judgment tasks or words for semantic judgment tasks), so the current stimuli may prime (make more available) the previous task set. Consequently, facing the same stimulus in different tasks produces cognitive costs, and it may be mainly these costs that are measured by switch costs. Studies have found that non-ambiguity of the stimuli (and non-overlap of responses) with respect to each of the possible tasks is sufficient to eliminate the costs of task switching in some cases. [5] [9] An important challenge for future research is to determine whether active or passive processes overcome task-set priming.

The switch cost

Explicit task cuing to explore switch costs

The explicit task-cuing procedure was developed to investigate the time course of task switching. The interval between the presentation of the cue indicating which task to perform and the presentation of the target stimulus can be manipulated to demonstrate the effect of available processing time on performance. [10] [11] [12] [13]

Two models explain the effects of cues on switch costs

Task-switching model

This task-switching model assumes the role of executive control. If the cue repeats, the executive does nothing, and the target is processed in accordance with the task set from the previous trial. If the cue alternates, the executive switches tasks before processing the target. Switching takes time and creates a switch cost. Predicts equal Reaction times (RTs) for cue repetitions and task repetitions, and slower RTs for task alternations because this is the only condition where task switches actually occur. [10]

Compound-stimulus model

This model does not assume executive control. The cue and the target jointly specify a unique response on each trial, so subjects can encode the cue and the target and choose the response associated with the compound. No task switching is required. Cues are encoded faster on repetition trials than on alternation trials because encoding benefits from repetition. Switch costs thereby reflect encoding benefits on repetition trials, not task switching, so it predicts faster Reaction times for cue repetitions than for task repetitions, and equal RTs for task repetitions and task alternations. [10]

Experimental evidence

Support for no executive control

To distinguish the two models, the experiments used two cues for each task with three types of trials: cue repetitions, in which the current cue was the same as the previous cue; task repetitions, in which the current cue was different from the previous cue but specified the same task; and task alternations, in which the current cue was different from the previous cue and specified a different task. The data showed large Reaction times differences between cue repetitions and task repetitions (same task, different cue), and negligible differences between task repetitions and task alternations, consistent with the compound-stimulus model. Thus, the switch costs observed in the explicit task-cuing procedure may not reflect executive processes. [10]

Related Research Articles

<span class="mw-page-title-main">Attention</span> Psychological process of selectively perceiving and prioritising discrete aspects of information

Attention is the concentration of awareness on some phenomenon to the exclusion of other stimuli. It is a process of selectively concentrating on a discrete aspect of information, whether considered subjective or objective. William James (1890) wrote that "Attention is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence." Attention has also been described as the allocation of limited cognitive processing resources. Attention is manifested by an attentional bottleneck, in terms of the amount of data the brain can process each second; for example, in human vision, only less than 1% of the visual input data can enter the bottleneck, leading to inattentional blindness.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

Inhibition of return (IOR) refers to an orientation mechanism that briefly enhances the speed and accuracy with which an object is detected after the object is attended, but then impairs detection speed and accuracy. IOR is usually measured with a cue-response paradigm, in which a person presses a button when they detect a target stimulus following the presentation of a cue that indicates the location in which the target will appear. The cue can be exogenous, or endogenous. Inhibition of return results from oculomotor activation, regardless of whether it was produced by exogenous signals or endogenously. Although IOR occurs for both visual and auditory stimuli, IOR is greater for visual stimuli, and is studied more often than auditory stimuli.

<span class="mw-page-title-main">Executive functions</span> Cognitive processes necessary for control of behavior

In cognitive science and neuropsychology, executive functions are a set of cognitive processes that are necessary for the cognitive control of behavior: selecting and successfully monitoring behaviors that facilitate the attainment of chosen goals. Executive functions include basic cognitive processes such as attentional control, cognitive inhibition, inhibitory control, working memory, and cognitive flexibility. Higher-order executive functions require the simultaneous use of multiple basic executive functions and include planning and fluid intelligence.

Attentional shift occurs when directing attention to a point increases the efficiency of processing of that point and includes inhibition to decrease attentional resources to unwanted or irrelevant inputs. Shifting of attention is needed to allocate attentional resources to more efficiently process information from a stimulus. Research has shown that when an object or area is attended, processing operates more efficiently. Task switching costs occur when performance on a task suffers due to the increased effort added in shifting attention. There are competing theories that attempt to explain why and how attention is shifted as well as how attention is moved through space.

<span class="mw-page-title-main">Negative priming</span> Initial stimulus inhibits response to subsequent stimulus

Negative priming is an implicit memory effect in which prior exposure to a stimulus unfavorably influences the response to the same stimulus. It falls under the category of priming, which refers to the change in the response towards a stimulus due to a subconscious memory effect. Negative priming describes the slow and error-prone reaction to a stimulus that is previously ignored. For example, a subject may be imagined trying to pick a red pen from a pen holder. The red pen becomes the target of attention, so the subject responds by moving their hand towards it. At this time, they mentally block out all other pens as distractors to aid in closing in on just the red pen. After repeatedly picking the red pen over the others, switching to the blue pen results in a momentary delay picking the pen out. The slow reaction due to the change of the distractor stimulus to target stimulus is called the negative priming effect.

<span class="mw-page-title-main">Human multitasking</span> Ability to perform activities simultaneously

Human multitasking is the concept that one can split their attention on more than one task or activity at the same time, such as speaking on the phone while driving a car. Multitasking can result in time wasted due to human context switching and becoming prone to errors due to insufficient attention. If one becomes proficient at two tasks, it is possible to rapidly shift attention between the tasks and perform the tasks well.

In cognitive psychology, the Eriksen flanker task is a set of response inhibition tests used to assess the ability to suppress responses that are inappropriate in a particular context. The target is flanked by non-target stimuli which correspond either to the same directional response as the target, to the opposite response, or to neither. The task is named for American psychologists Barbara. A. Eriksen & Charles W. Eriksen, who first published the task in 1974, and for the flanker stimuli that surround the target. In the tests, a directional response is assigned to a central target stimulus. Various forms of the task are used to measure information processing and selective attention.

In psychology and neuroscience, executive dysfunction, or executive function deficit, is a disruption to the efficacy of the executive functions, which is a group of cognitive processes that regulate, control, and manage other cognitive processes. Executive dysfunction can refer to both neurocognitive deficits and behavioural symptoms. It is implicated in numerous psychopathologies and mental disorders, as well as short-term and long-term changes in non-clinical executive control.

Priming is the idea that exposure to one stimulus may influence a response to a subsequent stimulus, without conscious guidance or intention. The priming effect refers to the positive or negative effect of a rapidly presented stimulus on the processing of a second stimulus that appears shortly after. Generally speaking, the generation of priming effect depends on the existence of some positive or negative relationship between priming and target stimuli. For example, the word nurse might be recognized more quickly following the word doctor than following the word bread. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Priming effects involve word recognition, semantic processing, attention, unconscious processing, and many other issues, and are related to differences in various writing systems. Research, however, has yet to firmly establish the duration of priming effects, yet their onset can be almost instantaneous.

Serial reaction time (SRT) is a commonly used parameter in the measurement of unconscious learning processes. This parameter is operationalised through a SRT task, in which participants are asked to repeatedly respond to a fixed set of stimuli in which each cue signals that a particular response needs to be made. Unbeknownst to the participant, there are probabilities governing the occurrence of the cues as they appear in both a repeated sequence and randomised order, thus required responses following one cue have some predictability, influencing reaction-time. As a result, reaction-time to these cues becomes increasingly fast as subjects learn and utilise these transition probabilities.

Auditory spatial attention is a specific form of attention, involving the focusing of auditory perception to a location in space.

<span class="mw-page-title-main">Visual N1</span>

The visual N1 is a visual evoked potential, a type of event-related electrical potential (ERP), that is produced in the brain and recorded on the scalp. The N1 is so named to reflect the polarity and typical timing of the component. The "N" indicates that the polarity of the component is negative with respect to an average mastoid reference. The "1" originally indicated that it was the first negative-going component, but it now better indexes the typical peak of this component, which is around 150 to 200 milliseconds post-stimulus. The N1 deflection may be detected at most recording sites, including the occipital, parietal, central, and frontal electrode sites. Although, the visual N1 is widely distributed over the entire scalp, it peaks earlier over frontal than posterior regions of the scalp, suggestive of distinct neural and/or cognitive correlates. The N1 is elicited by visual stimuli, and is part of the visual evoked potential – a series of voltage deflections observed in response to visual onsets, offsets, and changes. Both the right and left hemispheres generate an N1, but the laterality of the N1 depends on whether a stimulus is presented centrally, laterally, or bilaterally. When a stimulus is presented centrally, the N1 is bilateral. When presented laterally, the N1 is larger, earlier, and contralateral to the visual field of the stimulus. When two visual stimuli are presented, one in each visual field, the N1 is bilateral. In the latter case, the N1's asymmetrical skewedness is modulated by attention. Additionally, its amplitude is influenced by selective attention, and thus it has been used to study a variety of attentional processes.

<span class="mw-page-title-main">Cognitive bias modification</span>

Cognitive bias modification (CBM) refers to procedures used in psychology that aim to directly change biases in cognitive processes, such as biased attention toward threat stimuli and biased interpretation of ambiguous stimuli as threatening. The procedures are designed to modify information processing via cognitive tasks that use basic learning principles and repeated practice to encourage a healthier thinking style in line with the training contingency.

Broadbent's filter model is an early selection theory of attention.

Object-based attention refers to the relationship between an ‘object’ representation and a person’s visually stimulated, selective attention, as opposed to a relationship involving either a spatial or a feature representation; although these types of selective attention are not necessarily mutually exclusive. Research into object-based attention suggests that attention improves the quality of the sensory representation of a selected object, and results in the enhanced processing of that object’s features.

Crossmodal attention refers to the distribution of attention to different senses. Attention is the cognitive process of selectively emphasizing and ignoring sensory stimuli. According to the crossmodal attention perspective, attention often occurs simultaneously through multiple sensory modalities. These modalities process information from the different sensory fields, such as: visual, auditory, spatial, and tactile. While each of these is designed to process a specific type of sensory information, there is considerable overlap between them which has led researchers to question whether attention is modality-specific or the result of shared "cross-modal" resources. Cross-modal attention is considered to be the overlap between modalities that can both enhance and limit attentional processing. The most common example given of crossmodal attention is the Cocktail Party Effect, which is when a person is able to focus and attend to one important stimulus instead of other less important stimuli. This phenomenon allows deeper levels of processing to occur for one stimulus while others are then ignored.

The Posner cueing task, also known as the Posner paradigm, is a neuropsychological test often used to assess attention. Formulated by Michael Posner, it assesses a person's ability to perform an attentional shift. It has been used and modified to assess disorders, focal brain injury, and the effects of both on spatial attention.

Emotion perception refers to the capacities and abilities of recognizing and identifying emotions in others, in addition to biological and physiological processes involved. Emotions are typically viewed as having three components: subjective experience, physical changes, and cognitive appraisal; emotion perception is the ability to make accurate decisions about another's subjective experience by interpreting their physical changes through sensory systems responsible for converting these observed changes into mental representations. The ability to perceive emotion is believed to be both innate and subject to environmental influence and is also a critical component in social interactions. How emotion is experienced and interpreted depends on how it is perceived. Likewise, how emotion is perceived is dependent on past experiences and interpretations. Emotion can be accurately perceived in humans. Emotions can be perceived visually, audibly, through smell and also through bodily sensations and this process is believed to be different from the perception of non-emotional material.

In cognitive psychology, intertrial priming is an accumulation of the priming effect over multiple trials, where "priming" is the effect of the exposure to one stimulus on subsequently presented stimuli. Intertrial priming occurs when a target feature is repeated from one trial to the next, and typically results in speeded response times to the target. A target is the stimulus participants are required to search for. For example, intertrial priming occurs when the task is to respond to either a red or a green target, and the response time to a red target is faster if the preceding trial also has a red target.

References

  1. Monchi, O.; Petrides, M.; Doyon, J.; Postuma, R. B.; Worsley, K.; Dagher, A. (2004). "Neural Bases of Set-Shifting Deficits in Parkinson's Disease". Journal of Neuroscience. 24 (3): 702–710. doi: 10.1523/JNEUROSCI.4860-03.2004 . PMC   6729250 . PMID   14736856.
  2. Sawada, Y.; Nishio, Y.; Suzuki, K.; Hirayama, K.; Takeda, A.; Hosokai, Y.; Ishioka, T.; Itoyama, Y.; Takahashi, S.; Fukuda, H.; Mori, E. (2012). García, Antonio Verdejo (ed.). "Attentional Set-Shifting Deficit in Parkinson's Disease is Associated with Prefrontal Dysfunction: An FDG-PET Study". PLOS ONE. 7 (6): e38498. Bibcode:2012PLoSO...738498S. doi: 10.1371/journal.pone.0038498 . PMC   3369918 . PMID   22685575.
  3. Yerys, Benjamin E.; Wallace, Gregory L.; Kenworthy, Lauren E. (2009). "Set-shifting in Children with Autism Spectrum Disorders". Autism. 13 (5): 523–538. doi:10.1177/1362361309335716. PMC   3018342 . PMID   19759065.
  4. Brady, Danielle I.; Schwean, Vicki L.; Saklofske, Adam W. (2013). "Conceptual and Perceptual Set-shifting Executive Abilities in Young Adults with Asperger's Syndrome". Research in Autism Spectrum Disorders. 7 (12): 1631–1637. doi:10.1016/j.rasd.2013.09.009.
  5. 1 2 Arthur T. Jersild (June 1927). "Mental set and shift". Archives of Psychology. New York City (89). ISSN   0272-6653. OL   23627732M. Wikidata   Q108471192.
  6. 1 2 Rogers R.D., Monsell S. (1995). The cost of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231
  7. Schneider, D. W.; Logan, G. D. (2005). "Modeling Task Switching Without Switching Tasks: A Short-Term Priming Account of Explicitly Cued Performance". Journal of Experimental Psychology: General. 134 (3): 343–367. CiteSeerX   10.1.1.417.9443 . doi:10.1037/0096-3445.134.3.343. PMID   16131268.
  8. 1 2 3 Mayr, U.; Keele, S. W. (2000). "Changing internal constraints on action: The role of backward inhibition". Journal of Experimental Psychology. General. 129 (1): 4–26. doi:10.1037/0096-3445.129.1.4. PMID   10756484.
  9. 1 2 Allport A., Styles E.A., Hsieh S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In: Umilta C., Moscovitch M. (Eds.), Attention and performance XV (pp.421–452). Cambridge, Massachusetts: MIT Press.
  10. 1 2 3 4 Logan, G. D.; Bundesen, C. (2003). "Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure?". Journal of Experimental Psychology. Human Perception and Performance. 29 (3): 575–599. CiteSeerX   10.1.1.417.9417 . doi:10.1037/0096-1523.29.3.575. PMID   12848327.
  11. Monsell, S. (2003). "Task switching". Trends in Cognitive Sciences. 7 (3): 134–140. doi:10.1016/S1364-6613(03)00028-7. PMID   12639695. S2CID   12847511.
  12. Meiran, N. (1996) Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423-1442
  13. Wong, A. S.W.; Cooper, P. S.; Conley, A. C.; McKewen, M.; Fulham, W. R.; Michie, P. T.; Karayanidis, F. (2018). "Event-Related Potential Responses to Task Switching Are Sensitive to Choice of Spatial Filter". Frontiers in Neuroscience. 12: 143. doi: 10.3389/fnins.2018.00143 . PMC   5852402 . PMID   29568260.

PsyToolkit (free software) provides a web-based task switching measure based on the Rogers and Monsell (1995) alternating-task procedure.