Teledeltos paper is an electrically conductive paper. It is formed by a coating of carbon on one side of a sheet of paper, giving one black and one white side. Western Union developed Teledeltos paper in the late 1940s (several decades after it was already in use for mathematical modelling) for use in spark printer based fax machines and chart recorders. [1]
Teledeltos paper has several uses within engineering that are far removed from its original use in spark printers. Many of these use the paper to model the distribution of electric potential and other scalar fields.
Teledeltos provides a sheet of uniform isotropic resistivity. As it is inexpensive and easily cut to shape, it may be used to make resistors of any shape needed. The paper backing is an insulator. These shapes are usually made to represent or model real-world examples of a two-dimensional scalar fields, such as an electric field, or other fields following the linear distribution rules.
The resistivity of Teledeltos is around 6 kilohms / square. [2] [lower-roman 1] This is low enough that it may be used with safe low voltages, yet high enough that the currents remain low, avoiding problems with contact resistance.
Connections are made to the paper by applying areas of silver-loaded conductive paint and attaching wires to these areas, often with spring clips. [2] [3] Each painted area has a sufficiently low resistivity (relative to the carbon) and to be assumed to be a constant voltage. With the voltages applied, the current flow through the sheet will emulate the field distribution. Voltages may be measured within the sheet by applying a voltmeter probe (relative to a known electrodes) or current flows may be measured. As the sheet's resistivity is constant, the simplest way to measure a current flow is to use a small two-probe voltmeter to measure the voltage difference between the probes. As their spacing is known, and the resistivity, the resistance between them and (by Ohm's law) the current density may be determined.
A sheet that is large in comparison to the experimental area is usually sufficient for modeling an infinite field. [3]
Although the modelling of electric fields is itself directly useful in some fields such as thermionic valve design, [4] the main practical use of the broader technique is for modelling fields of other quantities. This technique may be applied to any field that follows the same linear rules as Ohm's law for bulk resistivity. This includes heat flow, some optics and some aspects of Newtonian mechanics. It is not usually applicable to fluid dynamics, owing to viscosity and compressibility effects, or to high-intensity optics where non-linear effects become apparent. It may be applicable to some mechanical problems involving homogeneous and isotropic materials such as metals, but not to composites.
Before the use of Teledeltos, a similar technique had been used for modelling gas flows, where a shallow tray of copper sulphate solution was used as the medium, with copper electrodes at each side. Barriers within the model could be sculpted from wax. Being a liquid, this was far less convenient. Stanley Hooker describes its use pre-war, although he also notes that compressibility effects could be modelled in this way, by sculpting the base of the tank to give additional depth and thus conductivity locally. [5]
One of the most important applications is for thermal modelling. Voltage is the analog of temperature and current flow that of heat flow. If the boundaries of a heatsink model are both painted with conductive paint to form two separate electrodes, each may be held at a voltage to represent the temperatures of some internal heat source (such as a microprocessor chip) and the external ambient temperature. Potentials within the heatsink represent internal temperatures and current flows represent heat flow. In many cases the internal heat source may be modelled with a constant current source, rather than a voltage, giving a better analogy of power loss as heat, rather than assuming a simple constant temperature. If the external airflow is restricted, the 'ambient' electrode may be subdivided and each section connected to a common voltage supply through a resistor or current limiter, representing the proportionate or maximum heatflow capacity of that airstream.
As heatsinks are commonly manufactured from extruded aluminium sections, the two-dimensional paper is not usually a serious limitation. In some cases, such as pistons for internal combustion engines, three-dimensional modelling may be required. This has been performed, in a manner analogous to Teledeltos paper, by using volume tanks of a conductive electrolyte. [6]
This thermal modelling technique is useful in many branches of mechanical engineering such as heatsink or radiator design and die casting. [7]
The development of computational modelling and finite element analysis has reduced the use of Teledeltos, such that the technique is now obscure and the materials can be hard to obtain. [2] Its use is still highly valuable in teaching, as the technique gives a very obvious method for measuring fields and offers immediate feedback as the shape of an experimental setup is changed, encouraging a more fundamental understanding. [3] [4]
Teledeltos can also be used to make sensors, either directly as an embedded resistive element or indirectly, as part of their design process.
A piece of Teledeltos with conductive electrodes at each end makes a simple resistor. Its resistance is slightly sensitive to applied mechanical strain by bending or compression, but the paper substrate is not robust enough to make a reliable sensor for long-term use.
A more common resistive sensor is in the form of a potentiometer. A long, thin resistor with an applied voltage may have a conductive probe slid along its surface. The voltage at the probe depends on its position between the two end contacts. Such a sensor may form the keyboard for a simple electronic musical instrument like a Tannerin or Stylophone.
A similar linear sensor uses two strips of Teledeltos, placed face to face. Pressure on the back of one (finger pressure is enough) presses the two conductive faces together to form a lower resistance contact. This may be used in similar potentiometric fashion to the conductive probe, but without requiring the special probe. This may be used as a classroom demonstration for another electronic musical instrument, with a ribbon controller keyboard, such as the Monotron. If crossed electrodes are used on each piece of Teledeltos, a two-dimensional resistive touchpad may be demonstrated.
Although Teledeltos is not used to manufacture capacitive sensors, its field modelling abilities also allow it to be used to determine the capacitance of arbitrarily shaped electrodes during sensor design. [2]
An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes. In an electrolyte the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons.
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.
A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).
A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.
Joule heating is the process by which the passage of an electric current through a conductor produces heat.
Sheet resistance, is the resistance of a square piece of a thin material with contacts made to two opposite sides of the square. It is usually a measurement of electrical resistance of thin films that are uniform in thickness. It is commonly used to characterize materials made by semiconductor doping, metal deposition, resistive paste printing, and glass coating. Examples of these processes are: doped semiconductor regions, and the resistors that are screen printed onto the substrates of thick-film hybrid microcircuits.
An electrostatic precipitator (ESP) is a filterless device that removes fine particles, such as dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.
A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.
In electrical engineering, four-terminal sensing, 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements than the simpler and more usual two-terminal (2T) sensing. Four-terminal sensing is used in some ohmmeters and impedance analyzers, and in wiring for strain gauges and resistance thermometers. Four-point probes are also used to measure sheet resistance of thin films.
Electrical contact resistance is resistance to the flow of electric current caused by incomplete contact of the surfaces through which the current is flowing, and by films or oxide layers on the contacting surfaces. It occurs at electrical connections such as switches, connectors, breakers, contacts, and measurement probes. Contact resistance values are typically small.
In electrical engineering, capacitive sensing is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric constant different from air. Many types of sensors use capacitive sensing, including sensors to detect and measure proximity, pressure, position and displacement, force, humidity, fluid level, and acceleration. Human interface devices based on capacitive sensing, such as touchpads, can replace the computer mouse. Digital audio players, mobile phones, and tablet computers will sometimes use capacitive sensing touchscreens as input devices. Capacitive sensors can also replace mechanical buttons.
In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.