This article needs additional citations for verification .(December 2024) |
Type | Switch |
---|---|
Electronic symbol | |
A telegraph key, clacker, tapper or morse key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. [1] Keys are used in all forms of electrical telegraph systems, including landline (also called wire) telegraphy and radio (also called wireless) telegraphy. An operator uses the telegraph key to send electrical pulses (or in the case of modern CW, unmodulated radio waves) of two different lengths: short pulses, called dots or dits, and longer pulses, called dashes or dahs. These pulses encode the letters and other characters that spell out the message.
The first telegraph key was invented by Alfred Vail, an associate of Samuel Morse. [2] Since then the technology has evolved and improved, resulting in a range of key designs. [3]
A straight key is the common telegraph key as seen in various movies. It is a simple bar with a knob on top and an electrical contact underneath. When the bar is pressed down against spring tension, it makes a closed electric circuit. [4] Traditionally, American telegraph keys had flat topped knobs and narrow bars (frequently curved), while European telegraph keys had ball shaped knobs and thick bars. This appears to be purely a matter of culture and training, but the users of each are tremendously partisan. [a]
Straight keys have been made in numerous variations for over 150 years and in numerous countries. They are the subject of an avid community of key collectors. The straight keys also had a shorting bar that closed the electrical circuit through the station when the operator was not actively sending messages. The shorting switch for an unused key was needed in telegraph systems wired in the style of North American railroads, in which the signal power was supplied from batteries only in telegraph offices at one or both ends of a line, rather than each station having its own bank of batteries, which was often used in Europe. The shorting bar completed the electrical path to the next station and all following stations, so that their sounders could respond to signals coming down the line, allowing the operator in the next town to receive a message from the central office. Although occasionally included in later keys for reasons of tradition, the shorting bar is unnecessary for radio telegraphy, except as a convenience to produce a steady signal for tuning the transmitter.
The straight key is simple and reliable, but the rapid pumping action needed to send a string of dots (or dits as most operators call them) poses some medically significant drawbacks.
Transmission speeds vary from 5 words (25 characters) per minute, by novice operators, up to about 30 words (150 characters) per minute by skilled operators. In the early days of telegraphy, a number of professional telegraphers developed a repetitive stress injury known as glass arm or telegraphers’ paralysis. [5] "Glass arm" may be reduced or eliminated by increasing the side play of the straight key, by loosening the adjustable trunnion screws. Such problems can be avoided either by using good manual technique, or by only using side-to-side key types. [6] [7] [8]
In addition to the basic up-and-down telegraph key, telegraphers have been experimenting with alternate key designs from the beginning of telegraphy. Many are made to move side-to-side instead of up-and-down. Some of the designs, such as sideswipers (or bushwhackers) and semi-automatic keys operate mechanically.
Beginning in the mid-20th century electronic devices called "keyers" have been developed, which are operated by special keys of various designs generally categorized as single-paddle keys (also called sideswipers), and double-paddle keys (or "iambic" [b] or "squeeze" keys). The keyer may be either an independent device that attaches to the transmitter in place of a telegraph key, or circuitry incorporated in modern amateurs' radios.
The first widely accepted alternative key was the sideswiper or sidewinder, sometimes called a cootie key or bushwhacker. This key uses a side-to-side action with contacts on both the left and right and the arm spring-loaded to return to center; the operator may make a dit or dah by swinging the lever in either direction. A series of dits can be sent by rocking the arm back and forth.
This first new style of key was introduced in part to increase speed of sending, but more importantly to reduce the repetitive strain injury affecting telegraphers. The side-to-side motion reduces strain, and uses different muscles than the up-and-down motion (called "pounding brass"). Nearly all advanced keys use some form of side-to-side action.
The alternating action produces a distinctive rhythm or swing which noticeably affects the operator's transmission rhythm (known as ‘fist’). Although the original sideswiper is now rarely seen or used, when the left and right contacts are electrically separated a sideswiper becomes a modern single-paddle key (see below); likewise, a modern single-lever key becomes an old-style sideswiper when its two contacts are wired together.
A popular side-to-side key is the semi-automatic key or bug, sometimes known as a Vibroplex key, after an early manufacturer of mechanical, semi-automatic keys. The original bugs were fully mechanical, based on a kind of simple clockwork mechanism, and required no electronic keyer. A skilled operator can achieve sending speeds in excess of 40 words per minute with a ‘bug’.
The benefit of the clockwork mechanism is that it reduces the motion required from the telegrapher's hand, which provides greater speed of sending, and it produces uniformly timed dits (dots, or short pulses) and maintains constant rhythm; consistent timing and rhythm are crucial for decoding the signal on the other end of the telegraph line.
The single paddle is held between the knuckle and the thumb of the right hand. When the paddle is pressed to the right (with the thumb), it kicks a horizontal pendulum which then rocks against the contact point, sending a series of short pulses (dits or dots) at a speed which is controlled by the pendulum’s length. When the paddle is pressed toward the left (with the knuckle) it makes a continuous contact suitable for sending dahs (dashes); the telegrapher remains responsible for timing the dahs to proportionally match the dits. The clockwork pendulum needs the extra kick that the stronger thumb press provides, which established the standard left-right paddle directions for the dit-dah assignments that persists on the paddles on 21st century electronic keys. A few semi-automatic keys were made with mirror-image mechanisms for left-handed telegraphers.
Like semi-automatic keys, the telegrapher operates an electronic keyer by tapping a paddle key, swinging its lever(s) from side-to-side. When pressed to one side (usually left), the keyer electronics generate a series of dahs; when pressed to the other side (usually right), a series of dits. Keyers work with two different types of keys: Single paddle and double paddle keys.
Like semi-automatic keys, pressing the paddle on one side produces a dit and the other a dah. Single paddle keys are also called single lever keys or sideswipers, the same name as the older side-to-side key design they greatly resemble. Double paddle keys are also called "iambic" keys [b] or "squeeze" keys. Also like the old semi-automatic keys, the conventional assignment of the paddle directions (for a right-handed telegrapher) is that pressing a paddle with the right thumb (pressing the single paddle rightward, or for a double-paddle key, pressing the left paddle with the thumb, rightwards towards the center) creates a series of dits. Pressing a paddle with the right knuckle (hence swinging a single paddle leftward, or the right paddle on a double-paddle key leftward to the center) creates a series of dahs. Left-handed telegraphers sometimes elect to reverse the electrical contacts, so their left-handed keying is a mirror image of standard right-handed keying.
Single paddle keys are essentially the same as the original sideswiper keys, with the left and right electrical contacts wired separately. Double-paddle keys have one arm for each of the two contacts, each arm held away from the common center by a spring; pressing either of the paddles towards the center makes contact, the same as pressing a single-lever key to one side. For double-paddle keys wired to an "iambic" keyer, squeezing both paddles together makes a double-contact, which causes the keyer to send alternating dits and dahs (or dahs and dits, depending on which lever makes first contact).
Most electronic keyers include dot and dash memory functions, so the operator does not need to use perfect spacing between dits and dahs or vice versa. With dit or dah memory, the operator's keying action can be about one dit ahead of the actual transmission. The electronics in the keyer adjusts the timing so that the output of each letter is machine-perfect. Electronic keyers allow very high speed transmission of code.
Using a keyer in what's called "iambic" mode requires a key with two paddles: One paddle produces dits and the other produces dahs. Pressing both at the same time (a "squeeze") produces an alternating dit-dah-dit-dah ( ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ) sequence, which starts with a dit if the dit side makes contact first, or a dah ( ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ) if the dah side connects first.
An additional advantage of electronic keyers over semiautomatic keys is that code speed is easily changed with electronic keyers, just by turning a knob. With a semiautomatic key, the location of the pendulum weight and the pendulum spring tension and contact must all be repositioned and rebalanced to change the dit speed. [9]
Keys having two separate levers, one for dits and the other for dahs are called dual or dual-lever paddles. With a dual paddle both contacts may be closed simultaneously, enabling the " iambic " [b] functions of an electronic keyer that is designed to support them: By pressing both paddles (squeezing the levers together) the operator can create a series of alternating dits and dahs, analogous to a sequence of iambs in poetry. [10] [11] For that reason, dual paddles are sometimes called squeeze keys or iambic keys. Typical dual-paddle keys' levers move horizontally, like the earlier single-paddle keys, as opposed to how the original "straight-keys'" arms move up-and-down.
Whether the sequence begins with a dit or a dah is determined by which lever makes contact first: If the dah lever is closed first, then the first element will be a dah, so the string of elements will be similar to a sequence of trochees in poetry, and the method could as logically be called "trochaic keying" ( ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ). If the dit lever makes first contact, then the string begins with a dit ( ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ).
Insofar as iambic [b] keying is a function of the electronic keyer, it is not correct, technically, to refer to a dual paddle key itself as "iambic", although this is commonly done in marketing. A dual paddle key is required for iambic sending, which also requires an iambic keyer. But any single- or dual-paddle key can be used non-iambicly, without squeezing, and there were electronic keyers made which did not have iambic functions.
Iambic keying or squeeze keying reduces the key strokes or hand movements necessary to make some characters, e.g. the letter C, which can be sent by merely squeezing the two paddles together. With a single-paddle or non-iambic keyer, the hand motion would require alternating four times for C (dah-dit-dah-dit ▄▄▄ ▄ ▄▄▄ ▄ ).
The efficiency of iambic keying has recently been discussed in terms of movements per character and timings for high speed CW, with the author concluding that the timing difficulties of correctly operating a keyer iambicly at high speed outweigh any small benefits. [12]
Iambic keyers function in one of at least two major modes: Mode A and mode B. There is a third, rarely available mode U.
Mode A is the original iambic mode, in which alternate dots and dashes are produced as long as both paddles are depressed. Mode A is essentially "what you hear is what you get": When the paddles are released, the keying stops with the last dot or dash that was being sent while the paddles were held.
Mode B is the second mode, which devolved from a logic error in an early iambic keyer.[ citation needed ] Over the years iambic mode B has become something of a standard and is the default setting in most keyers.
In mode B, dots and dashes are produced as long as both paddles are depressed. When the paddles are released, the keying continues by sending one more element than has already been heard. I.e., if the paddles were released during a dah then the last element sent will be a following dit; if the paddles were released during a dit then the sequence will end with the following dah.
Users accustomed to one mode may find it difficult to adapt to the other, so most modern keyers allow selection of the desired mode.
A third electronic keyer mode useful with a dual paddle is the "Ultimatic" mode (mode U), so-called for the brand name of the electronic keyer that introduced it. In the Ultimatic keying mode, the keyer will switch to the opposite element if the second lever is pressed before the first is released (that is, squeezed).
A single-lever paddle key has separate contacts for dits and dahs, but there is no ability to make both contacts simultaneously by squeezing the paddles together for iambic mode.
When a single-paddle key is used with an electronic keyer, continuous dits are created by holding the dit-side paddle ( ▄ ▄ ▄ ▄ ▄ ▄ ▄ ▄ ...); likewise, continuous dahs are created by holding the dah paddle ( ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ...).
A single-paddle key can non-iambicly operate any electronic keyer, whether or not it even offers iambic functions, and regardless of whether the keyer iambically operates in mode A, B, or U.
Simple telegraph-like keys were long used to control the flow of electricity in laboratory tests of electrical circuits. Often, these were simple "strap" keys, in which a bend in the key lever provided the key's spring action.
Telegraph-like keys were once used in the study of operant conditioning with pigeons. Starting in the 1940s, initiated by B. F. Skinner at Harvard University, the keys were mounted vertically behind a small circular hole about the height of a pigeon's beak in the front wall of an operant conditioning chamber. Electromechanical recording equipment detected the closing of the switch whenever the pigeon pecked the key. Depending on the psychological questions being investigated, keypecks might have resulted in the presentation of food or other stimuli.
With straight keys, side-swipers, and, to an extent, bugs, each and every telegrapher has their own unique style or rhythm pattern when transmitting a message. An operator's style is known as their "fist".
Since every fist is unique, other telegraphers can usually identify the individual telegrapher transmitting a particular message. This had a huge significance during the first and second World Wars, since the on-board telegrapher's "fist" could be used to track individual ships and submarines, and for traffic analysis.
However, with electronic keyers (either single- or double-paddle) this is no longer the case: Keyers produce uniformly "perfect" code at a set speed, which is altered at the request of the receiver, usually not the sender. Only inter-character and inter-word spacing remain unique to the operator, and can produce a less clear semblance of a "fist".
The Baudot code is an early character encoding for telegraphy invented by Émile Baudot in the 1870s. It was the predecessor to the International Telegraph Alphabet No. 2 (ITA2), the most common teleprinter code in use before ASCII. Each character in the alphabet is represented by a series of five bits, sent over a communication channel such as a telegraph wire or a radio signal by asynchronous serial communication. The symbol rate measurement is known as baud, and is derived from the same name.
Electrical telegraphy is a point-to-point text messaging system, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems called telegraphs, that were devised to send text messages more quickly than physically carrying them. Electrical telegraphy can be considered the first example of electrical engineering.
Morse code is a telecommunications method which encodes text characters as standardized sequences of two different signal durations, called dots and dashes, or dits and dahs. Morse code is named after Samuel Morse, one of the early developers of the system adopted for electrical telegraphy.
Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas pigeon post is not. Ancient signalling systems, although sometimes quite extensive and sophisticated as in China, were generally not capable of transmitting arbitrary text messages. Possible messages were fixed and predetermined, so such systems are thus not true telegraphs.
A teleprinter is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations.
Wireless telegraphy or radiotelegraphy is the transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term wireless telegraphy was also used for other experimental technologies for transmitting telegraph signals without wires. In radiotelegraphy, information is transmitted by pulses of radio waves of two different lengths called "dots" and "dashes", which spell out text messages, usually in Morse code. In a manual system, the sending operator taps on a switch called a telegraph key which turns the transmitter on and off, producing the pulses of radio waves. At the receiver the pulses are audible in the receiver's speaker as beeps, which are translated back to text by an operator who knows Morse code.
Vibroplex is the brand of side-to-side mechanical, semi-automatic Morse key first manufactured and sold in 1905 by the Vibroplex Company, after its invention and patent by Horace Greeley Martin of New York City in 1904. The original device became known as a "bug", most likely due to the original logo, which showed an "electrified bug". The Vibroplex Company has been in business continuously for 119 years, as of 2024. Amateur radio operator Scott E. Robbins, also known by the call sign W4PA, became the eighth owner of the Vibroplex Company on December 21, 2009. The company is located in Knoxville, Tennessee.
A telegraph sounder is an antique electromechanical device used as a receiver on electrical telegraph lines during the 19th century. It was invented by Alfred Vail after 1850 to replace the previous receiving device, the cumbersome Morse register and was the first practical application of the electromagnet. When a telegraph message comes in it produces an audible "clicking" sound representing the short and long keypresses – "dots" and "dashes" – which are used to represent text characters in Morse code. A telegraph operator would translate the sounds into characters representing the telegraph message.
In a radio receiver, a beat frequency oscillator or BFO is a dedicated oscillator used to create an audio frequency signal from Morse code radiotelegraphy (CW) transmissions to make them audible. The signal from the BFO is mixed with the received signal to create a heterodyne or beat frequency which is heard as a tone in the speaker. BFOs are also used to demodulate single-sideband (SSB) signals, making them intelligible, by essentially restoring the carrier that was suppressed at the transmitter. BFOs are sometimes included in communications receivers designed for short wave listeners; they are almost always found in communication receivers for amateur radio, which often receive CW and SSB signals.
A keyer is an electronic device used for signaling by hand, by way of pressing one or more switches. The technical term keyer has two very similar meanings, which are nonetheless distinct: One for telegraphy and the other for accessory devices built for computer-human communication:
CQ is a station code used by wireless operators derived from long established telegraphic practice on undersea cables and landlines, particularly used by those communicating in Morse code,, but also by voice operators, to make a general call. Transmitting the letters CQ on a particular radio frequency means that the transmission is a broadcast or "General Call" to anyone listening, and when the operator sends "K" or says "Go Ahead" it is an invitation for any licensed radio station listening on that frequency to respond. Its use on radio matched the existing use on Morse landline telegraphy and dates from the earliest wireless stations. It was widely used in point-to-point diplomatic and press services, maritime, aviation, and police services until those services eliminated Morse radiotelegraphy. It is still widely used in amateur radio which still has active use of Morse radiotelegraphy.
A telegraphist, telegrapher, or telegraph operator is an operator who uses a telegraph key to send and receive the Morse code in order to communicate by land lines or radio.
Ham radio is a popular term for amateur radio, derived from "ham" as an informal name for an amateur radio operator. The use first appeared in the United States during the opening decade of the 20th century—for example, in 1909, Robert A. Morton reported overhearing an amateur radio transmission which included the comment: "Say, do you know the fellow who is putting up a new station out your way? I think he is a ham." However, the term did not gain widespread usage in the United States until around 1920, after which it slowly spread to other English-speaking countries.
Procedural signs or prosigns are shorthand signals used in Morse code telegraphy, for the purpose of simplifying and standardizing procedural protocols for landline and radio communication. The procedural signs are distinct from conventional Morse code abbreviations, which consist mainly of brevity codes that convey messages to other parties with greater speed and accuracy. However, some codes are used both as prosigns and as single letters or punctuation marks, and for those, the distinction between a prosign and abbreviation is ambiguous, even in context.
A motorcycle transmission is a transmission created specifically for motorcycle applications. They may also be found in use on other light vehicles such as motor tricycles and quadbikes, go-karts, offroad buggies, auto rickshaws, mowers, and other utility vehicles, microcars, and even some superlight racing cars.
Women in telegraphy have been evident since the 1840s. The introduction of practical systems of telegraphy in the 1840s led to the creation of a new occupational category, the telegrapher, telegraphist or telegraph operator. Duties of the telegrapher included sending and receiving telegraphic messages, known as telegrams, using a variety of signaling systems, and routing of trains for the railroads. While telegraphy is often viewed as a males-only occupation, women were also employed as telegraph operators from its earliest days. Telegraphy was one of the first communications technology occupations open to women.
In CW Morse code operations, QSK or full break-in operation describes an operating mode in which the transmitting station can detect signals from other stations between the elements or letters of the Morse transmission. This allows other stations to interrupt the transmitting station between individual coding elements, and such allows for a conversational style of communication.
The Wheatstone system was an automated telegraph system that replaced a human operator with machines capable of sending and recording Morse code at a consistent fast rate. The system included a perforator, which prepared punched paper tape called a Wheatstone slip, a transmitter that read the tape and converted the symbols into dots and dashes encoded as mark and space electric currents on the telegraph line, and a receiver at the other end of the telegraph line that printed the Morse symbols. The system was invented by Charles Wheatstone. Enhancements could be made so that it was a duplex system, able to send and receive on the same line simultaneously.
The Schilling telegraph is a needle telegraph invented by Pavel Schilling in the nineteenth century. It consists of a bank of needle instruments which between them display a binary code representing a letter or numeral. Signals were sent from a piano-like keyboard, and an additional circuit was provided for calling attention at the receiving end by setting off an alarm.
Jesse H. Bunnell was a telegraphist, famous for his speed record in telegraph transmission, inventor, known for construction of different telegraph keys.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite web}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)