Tensor network

Last updated

Tensor networks or tensor network states are a class of variational wave functions used in the study of many-body quantum systems. [1] Tensor networks extend one-dimensional matrix product states to higher dimensions while preserving some of their useful mathematical properties. [2]

Contents

Two different tensor network representations of a single 7-indexed tensor (both networks can be contracted to it with 7 free indices remaining). The bottom one can be derived from the top one by performing contraction on the three 3-indexed tensors (in yellow) and merging them together. Tensor network contraction example.png
Two different tensor network representations of a single 7-indexed tensor (both networks can be contracted to it with 7 free indices remaining). The bottom one can be derived from the top one by performing contraction on the three 3-indexed tensors (in yellow) and merging them together.

The wave function is encoded as a tensor contraction of a network of individual tensors. [3] The structure of the individual tensors can impose global symmetries on the wave function (such as antisymmetry under exchange of fermions) or restrict the wave function to specific quantum numbers, like total charge, angular momentum, or spin. It is also possible to derive strict bounds on quantities like entanglement and correlation length using the mathematical structure of the tensor network. [4] This has made tensor networks useful in theoretical studies of quantum information in many-body systems. They have also proved useful in variational studies of ground states, excited states, and dynamics of strongly correlated many-body systems. [5]

Diagrammatic notation

In general, a tensor network diagram (Penrose diagram) can be viewed as a graph where nodes (or vertices) represent individual tensors, while edges represent summation over an index. Free indices are depicted as edges (or legs) attached to a single vertex only. [6] Sometimes, there is also additional meaning to a node's shape. For instance, one can use trapezoids for unitary matrices or tensors with similar behaviour. This way, flipped trapezoids would be interpreted as complex conjugates to them.

Connection to machine learning

Tensor networks have been adapted for supervised learning, [7] taking advantage of similar mathematical structure in variational studies in quantum mechanics and large-scale machine learning. This crossover has spurred collaboration between researchers in artificial intelligence and quantum information science. In June 2019, Google, the Perimeter Institute for Theoretical Physics, and X (company), released TensorNetwork, [8] an open-source library for efficient tensor calculations. [9]

The main interest in tensor networks and their study from the perspective of machine learning is to reduce the number of trainable parameters (in a layer) by approximating a high-order tensor with a network of lower-order ones. Using the so-called tensor train technique (TT), [10] one can reduce an N-order tensor (containing exponentially many trainable parameters) to a chain of N tensors of order 2 or 3, which gives us a polynomial number of parameters.

Tensor train technique Tensor train.png
Tensor train technique

See also

Related Research Articles

<span class="mw-page-title-main">Many-worlds interpretation</span> Interpretation of quantum mechanics that denies the collapse of the wavefunction

The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations, such as the Copenhagen interpretation, the evolution of reality as a whole in MWI is rigidly deterministic and local. Many-worlds is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1970s.

<span class="mw-page-title-main">Quantum computing</span> Technology that uses quantum mechanics

A quantum computer is a computer that exploits quantum mechanical phenomena.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. Collapse is a black box for a thermodynamically irreversible interaction with a classical environment.

<span class="mw-page-title-main">Spin network</span> Diagram used to represent quantum field theory calculations

In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.

In physics, hidden-variable theories are proposals to provide explanations of quantum mechanical phenomena through the introduction of hypothetical entities. The existence of fundamental indeterminacy for some measurements is assumed as part of the mathematical formulation of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle. Most hidden-variable theories are attempts to avoid this indeterminacy, but possibly at the expense of requiring that nonlocal interactions be allowed.

In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer.

<span class="mw-page-title-main">Quantum neural network</span> Quantum Mechanics in Neural Networks

Quantum neural networks are computational neural network models which are based on the principles of quantum mechanics. The first ideas on quantum neural computation were published independently in 1995 by Subhash Kak and Ron Chrisley, engaging with the theory of quantum mind, which posits that quantum effects play a role in cognitive function. However, typical research in quantum neural networks involves combining classical artificial neural network models with the advantages of quantum information in order to develop more efficient algorithms. One important motivation for these investigations is the difficulty to train classical neural networks, especially in big data applications. The hope is that features of quantum computing such as quantum parallelism or the effects of interference and entanglement can be used as resources. Since the technological implementation of a quantum computer is still in a premature stage, such quantum neural network models are mostly theoretical proposals that await their full implementation in physical experiments.

In computational physics, variational Monte Carlo (VMC) is a quantum Monte Carlo method that applies the variational method to approximate the ground state of a quantum system.

In the case of systems composed of subsystems, the classification of quantum-entangledstates is richer than in the bipartite case. Indeed, in multipartite entanglement apart from fully separable states and fully entangled states, there also exists the notion of partially separable states.

In physics, the observer effect is the disturbance of an observed system by the act of observation. This is often the result of utilizing instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire, which causes some of the air to escape, thereby changing the pressure to observe it. Similarly, seeing non-luminous objects requires light hitting the object to cause it to reflect that light. While the effects of observation are often negligible, the object still experiences a change. This effect can be found in many domains of physics, but can usually be reduced to insignificance by using different instruments or observation techniques.

<span class="mw-page-title-main">Vladimir Korepin</span> Russian physicist and mathematician

Vladimir E. Korepin is a professor at the C. N. Yang Institute of Theoretical Physics of the Stony Brook University. Korepin made research contributions in several areas of mathematics and physics.

<span class="mw-page-title-main">Frank Verstraete</span> Belgian quantum physicist (born 1972)

Frank Verstraete is a Belgian quantum physicist who is working on the interface between quantum information theory and quantum many-body physics. He pioneered the use of tensor networks and entanglement theory in quantum many body systems. He holds the Leigh Trapnell Professorship of Quantum Physics at the Faculty of Mathematics, University of Cambridge, and is professor at the Faculty of Physics at Ghent University.

Categorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably monoidal category theory. The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020.

<span class="mw-page-title-main">Matrix product state</span>

A Matrix product state (MPS) is a quantum state of many particles, written in the following form:

<span class="mw-page-title-main">Quantum machine learning</span> Interdisciplinary research area at the intersection of quantum physics and machine learning

Quantum machine learning is the integration of quantum algorithms within machine learning programs.

Applying classical methods of machine learning to the study of quantum systems is the focus of an emergent area of physics research. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other examples include learning Hamiltonians, learning quantum phase transitions, and automatically generating new quantum experiments. Classical machine learning is effective at processing large amounts of experimental or calculated data in order to characterize an unknown quantum system, making its application useful in contexts including quantum information theory, quantum technologies development, and computational materials design. In this context, it can be used for example as a tool to interpolate pre-calculated interatomic potentials or directly solving the Schrödinger equation with a variational method.

A generalized probabilistic theory (GPT) is a general framework to describe the operational features of arbitrary physical theories. A GPT must specify what kind of physical systems one can find in the lab, as well as rules to compute the outcome statistics of any experiment involving labeled preparations, transformations and measurements. The framework of GPTs has been used to define hypothetical non-quantum physical theories which nonetheless possess quantum theory's most remarkable features, such as entanglement or teleportation. Notably, a small set of physically motivated axioms is enough to single out the GPT representation of quantum theory.

Neural Network Quantum States is a general class of variational quantum states parameterized in terms of an artificial neural network. It was first introduced in 2017 by the physicists Giuseppe Carleo and Matthias Troyer to approximate wave functions of many-body quantum systems.

<span class="mw-page-title-main">Germán Sierra</span> Spanish theoretical physicist, author, and academic

Germán Sierra is a Spanish theoretical physicist, author, and academic. He is Professor of Research at the Institute of Theoretical Physics Autonomous University of Madrid-Spanish National Research Council.

References

  1. Orús, Román (5 August 2019). "Tensor networks for complex quantum systems". Nature Reviews Physics . 1 (9): 538–550. arXiv: 1812.04011 . Bibcode:2019NatRP...1..538O. doi:10.1038/s42254-019-0086-7. ISSN   2522-5820. S2CID   118989751.
  2. Orús, Román (2014-10-01). "A practical introduction to tensor networks: Matrix product states and projected entangled pair states". Annals of Physics. 349: 117–158. arXiv: 1306.2164 . Bibcode:2014AnPhy.349..117O. doi:10.1016/j.aop.2014.06.013. ISSN   0003-4916. S2CID   118349602.
  3. Biamonte, Jacob; Bergholm, Ville (2017-07-31). "Tensor Networks in a Nutshell". arXiv: 1708.00006 [quant-ph].
  4. Verstraete, F.; Wolf, M. M.; Perez-Garcia, D.; Cirac, J. I. (2006-06-06). "Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States". Physical Review Letters. 96 (22): 220601. arXiv: quant-ph/0601075 . Bibcode:2006PhRvL..96v0601V. doi:10.1103/PhysRevLett.96.220601. hdl: 1854/LU-8590963 . PMID   16803296. S2CID   119396305.
  5. Montangero, Simone (28 November 2018). Introduction to tensor network methods : numerical simulations of low-dimensional many-body quantum systems. Cham, Switzerland. ISBN   978-3-030-01409-4. OCLC   1076573498.{{cite book}}: CS1 maint: location missing publisher (link)
  6. "The Tensor Network". Tensor Network. Retrieved 2022-07-30.
  7. Stoudenmire, E. Miles; Schwab, David J. (2017-05-18). "Supervised Learning with Quantum-Inspired Tensor Networks". Advances in Neural Information Processing Systems. 29: 4799. arXiv: 1605.05775 .
  8. google/TensorNetwork, 2021-01-30, retrieved 2021-02-02
  9. "Introducing TensorNetwork, an Open Source Library for Efficient Tensor Calculations". Google AI Blog. 4 June 2019. Retrieved 2021-02-02.
  10. Oseledets, I. V. (2011-01-01). "Tensor-Train Decomposition". SIAM Journal on Scientific Computing. 33 (5): 2295–2317. Bibcode:2011SJSC...33.2295O. doi:10.1137/090752286. ISSN   1064-8275. S2CID   207059098.