![]() Softcover edition | |
Author | Leonard Susskind |
---|---|
Language | English |
Subject | Black hole, string theory |
Genre | Popular science |
Publisher | Little, Brown and Company |
Publication date | July 7, 2008 |
Publication place | United States |
Media type | Print, e-book, audiobook |
Pages | 480 pp. |
ISBN | 978-0316016407 |
Preceded by | The Cosmic Landscape |
Followed by | The Theoretical Minimum |
Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics is a 2008 popular science book by American theoretical physicist Leonard Susskind. The book covers the black hole information paradox, and the related scientific dispute between Stephen Hawking and Susskind. [1] Susskind is known for his work on string theory and wrote a previous popular science book, The Cosmic Landscape , in 2005. [2]
Hawking proposed that information is lost in black holes, and not preserved in Hawking radiation. [2] Susskind disagreed, arguing that Hawking's conclusions violated one of the most basic scientific laws of the universe, the conservation of information. As Susskind depicts in his book, The Black Hole War was a "genuine scientific controversy" between scientists favoring an emphasis on the principles of relativity against those in favor of quantum mechanics. [1] The debate led to the holographic principle, proposed by Gerard 't Hooft and refined by Susskind, which suggested that the information is in fact preserved, stored on the boundary of a system. [3]
Sean M. Carroll in the Wall Street Journal praised the book for successfully explaining the topic in a way that lay readers could understand, despite the difficulty of the subject. Carroll writes that the book contains a "wealth of anecdotes", and that Susskind's "wit and storytelling abilities ... are pleasantly on display in" the book. [4] George Johnson of The New York Times was critical of the beginning of the book, writing that the introduction on the basic concepts of relativity and quantum mechanics was excessive, especially for readers who have already read other popular science books on theoretical physics. [5] Time Magazine's Lev Grossman gave the book a B+, saying that "you could dismiss it all as nerd-on-nerd violence, but then you'd miss out on Susskind explaining why the universe is actually a hologram." [6] Jesse Cohen of the Los Angeles Times criticized the book for its "tendency to meander" with personal anecdotes, although the book "glows with the warmth of conversation." [7] The New Scientist included the book on its 2008 editor's picks list [8] and the Washington Post listed it as one of the best books of 2008 in their annual holiday shopping guide. [9]
A black hole is a region of spacetime where gravity is so strong that nothing, not even light, can escape it. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever is present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.
The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Susskind said, "The three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978, that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.
Sir Roger Penrose is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.
A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics.
A gravitational singularity, spacetime singularity, or simply singularity, is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.
Black Holes and Baby Universes and other Essays is a 1993 popular science book by English physicist Stephen Hawking.
A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by the physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics.
In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) that are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) that are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.
Leonard Susskind is an American theoretical physicist, Professor of theoretical physics at Stanford University and founding director of the Stanford Institute for Theoretical Physics. His research interests are string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.
Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.
The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.
Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity.
The Thorne–Hawking–Preskill bet was a public bet on the outcome of the black hole information paradox made in 1997 by physics theorists Kip Thorne and Stephen Hawking on the one side, and John Preskill on the other, according to the document they signed 6 February 1997, as shown in Hawking's 2001 book The Universe in a Nutshell.
Cosmological natural selection, also called the fecund universes, is a hypothesis proposed by Lee Smolin intended as a scientific alternative to the anthropic principle. It addresses why our universe has the particular properties that allow for complexity and life. The hypothesis suggests that a process analogous to biological natural selection applies at the grandest of scales. Smolin first proposed the idea in 1992 and summarized it in a book aimed at a lay audience called The Life of the Cosmos, published in 1997.
Sean Michael Carroll is an American theoretical physicist who specializes in quantum mechanics, cosmology, and the philosophy of science. He is the Homewood Professor of Natural Philosophy at Johns Hopkins University. He was formerly a research professor at the Walter Burke Institute for Theoretical Physics at the California Institute of Technology (Caltech) department of physics. He also is currently an external professor at the Santa Fe Institute, and he has been a contributor to the physics blog Cosmic Variance, where he has published in scientific journals such as Nature as well as other publications, including The New York Times, Sky & Telescope, and New Scientist. He is known for his atheism, his vocal critique of theism and defence of naturalism. He is considered a prolific public speaker and science popularizer. In 2007, Carroll was named NSF Distinguished Lecturer by the National Science Foundation.
Stephen William Hawking was an English theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at Cambridge, widely viewed as one of the most prestigious academic posts in the world.
The Cosmic Landscape is a non-fiction popular science book on the anthropic principle and string theory landscape. It is written by theoretical physicist Leonard Susskind. The book was initially published by Little, Brown and Company on December 12, 2005.
A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.
ER = EPR is a conjecture in physics stating that two entangled particles are connected by a wormhole and is thought by some to be a basis for unifying general relativity and quantum mechanics into a theory of everything.