The Physics of Blown Sand and Desert Dunes

Last updated

The Physics of Blown Sand and Desert Dunes is a scientific book written by Ralph A. Bagnold. [1] The book laid the foundations of the scientific investigation of the transport of sand by wind. [2] It also discusses the formation and movement of sand dunes in the Libyan Desert. During his expeditions into the Libyan Desert, Bagnold had been fascinated by the shapes of the sand dunes, and after returning to England he built a wind tunnel and conducted the experiments which are the basis of the book. [3]

Contents

Bagnold finished writing the book in 1939, and it was first published on 26 June 1941. A reprinted version, with minor revisions by Bagnold, was published by Chapman and Hall in 1953, and reprinted again in 1971. The book was reissued by Dover Publications in 2005. [4] [5]

The book explores the movement of sand in desert environments, with a particular emphasis on how wind affects the formation and movement of dunes and ripples. Bagnold's interest in this subject was spurred by his extensive desert expeditions, during which he observed various sand storms. One pivotal observation was that the movement of sand, unlike that of dust, predominantly occurs near the ground, within a height of one metre, and was less influenced by large-scale eddy currents in the air. [5] [6]

The book emphasises the feasibility of replicating these natural phenomena under controlled conditions in a laboratory. By using a wind tunnel, Bagnold sought to gain a deeper understanding of the physics governing the interaction between airstreams and sand grains, and vice versa. His aim was to ensure that findings from controlled experiments mirrored real-world conditions, with verifications of these laboratory results conducted through field observations in the Libyan Desert in the late 1930s. [5] [7]

Bagnold delineates his research into two distinct stages. The first, which constitutes the primary focus of the book, investigates the dynamics of sand movement across mostly flat terrains. This includes understanding how sand is lifted, transported, and accumulated on a plane surface. Bagnold's wind tunnel experiments from the mid-1930s form the core of his analysis, though the book also dedicates chapters to the morphology of naturally occurring sand formations. [5] [8]

The second stage, which Bagnold indicates is yet to be fully explored, delves into aeolian transport and the aerodynamics of airstreams as they navigate the curved surfaces of sand accumulations, hinting at the complexities of studying such natural systems. Apart from examining sand and its dynamics in the context of wind, Bagnold also makes comparisons between sand and dry granular snow, noting the parallels in their movement. Differences and similarities between sand movement in air versus water are also highlighted. [9]

Acknowledging the pioneering nature of his work, Bagnold expressed an awareness of the potential limitations and omissions in his study. He also emphasised the balance he attempted to strike between providing a rigorous scientific treatment, incorporating mathematical models and diagrams, while ensuring the content remained accessible to experts across diverse fields, from hydraulic engineering, to geophysics and geomorphology. [10] [5] [11]

The book is still a main reference in the field, and was used by NASA for studying sand dunes and the development of sand-driving mechanisms on Mars. [12] [13] [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Dune</span> Hill of loose sand built by aeolian processes or the flow of water

A dune is a landform composed of wind- or water-driven sand. It typically takes the form of a mound, ridge, or hill. An area with dunes is called a dune system or a dune complex. A large dune complex is called a dune field, while broad, flat regions covered with wind-swept sand or dunes with little or no vegetation are called ergs or sand seas. Dunes occur in different shapes and sizes, but most kinds of dunes are longer on the stoss (upflow) side, where the sand is pushed up the dune, and have a shorter slip face in the lee side. The valley or trough between dunes is called a dune slack.

<span class="mw-page-title-main">Ralph Bagnold</span> British Army officer

Brigadier Ralph Alger Bagnold, OBE, FRS, was an English 20th-century desert explorer, geologist and soldier.

<span class="mw-page-title-main">Syrtis Major Planum</span> Martian volcano

Syrtis Major Planum is a "dark spot" located in the boundary between the northern lowlands and southern highlands of Mars just west of the impact basin Isidis in the Syrtis Major quadrangle. It was discovered, on the basis of data from Mars Global Surveyor, to be a low-relief shield volcano, but was formerly believed to be a plain, and was then known as Syrtis Major Planitia. The dark color comes from the basaltic volcanic rock of the region and the relative lack of dust.

<span class="mw-page-title-main">Barchan</span> Crescent-shaped dune

A barchan or barkhan dune is a crescent-shaped dune. The term was introduced in 1881 by Russian naturalist Alexander von Middendorf, based on their occurrence in Turkestan and other inland desert regions. Barchans face the wind, appearing convex and are produced by wind action predominantly from one direction. They are a very common landform in sandy deserts all over the world and are arc-shaped, markedly asymmetrical in cross section, with a gentle slope facing toward the wind sand ridge, comprising well-sorted sand.

<span class="mw-page-title-main">Aeolian processes</span> Processes due to wind activity

Aeolian processes, also spelled eolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth. Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts.

<span class="mw-page-title-main">Yardang</span> Streamlined aeolian landform

A yardang is a streamlined protuberance carved from bedrock or any consolidated or semiconsolidated material by the dual action of wind abrasion by dust and sand and deflation Yardangs become elongated features typically three or more times longer than wide, and when viewed from above, resemble the hull of a boat. Facing the wind is a steep, blunt face that gradually gets lower and narrower toward the lee end. Yardangs are formed by wind erosion, typically of an originally flat surface formed from areas of harder and softer material. The soft material is eroded and removed by the wind, and the harder material remains. The resulting pattern of yardangs is therefore a combination of the original rock distribution, and the fluid mechanics of the air flow and resulting pattern of erosion.

<span class="mw-page-title-main">Shangri-La (Titan)</span> Titanian dune field

Shangri-La is a large, dark region of Saturn's moon Titan at 10°S165°W. It is named after Shangri-La, the mythical paradise in Tibet.

<span class="mw-page-title-main">Saltation (geology)</span> Particle transport by fluids

In geology, saltation is a specific type of particle transport by fluids such as wind or water. It occurs when loose materials are removed from a bed and carried by the fluid, before being transported back to the surface. Examples include pebble transport by rivers, sand drift over desert surfaces, soil blowing over fields, and snow drift over smooth surfaces such as those in the Arctic or Canadian Prairies.

<span class="mw-page-title-main">Erg (landform)</span> Broad area of desert covered with wind-swept sand

An erg is a broad, flat area of desert covered with wind-swept sand with little or no vegetative cover. The word is derived from the Arabic word ʿarq (عرق), meaning "dune field". Strictly speaking, an erg is defined as a desert area that contains more than 125 km2 (48 sq mi) of aeolian or wind-blown sand and where sand covers more than 20% of the surface. Smaller areas are known as "dune fields". The largest hot desert in the world, the Sahara, covers 9 million square kilometres and contains several ergs, such as the Chech Erg and the Issaouane Erg in Algeria. Approximately 85% of all the Earth's mobile sand is found in ergs that are greater than 32,000 km2 (12,355 sq mi), the largest being the Rub' al Khali, the Empty Quarter of the Arabian Peninsula. Ergs are also found on other celestial bodies, such as Venus, Mars, and Saturn's moon Titan.

The Bagnold formula, named after Ralph Alger Bagnold, relates the amount of sand moved by the wind to wind speed by saltation. It states that the mass transport of sand is proportional to the third power of the friction velocity. Under steady conditions, this implies that mass transport is proportional to the third power of the excess of the wind speed over the minimum wind speed that is able to activate and sustain a continuous flow of sand grains.

<span class="mw-page-title-main">Tyrrhena Terra</span> Terra on Mars

Tyrrhena Terra is a large area on Mars, centered south of the Martian equator and immediately northeast of the Hellas basin. Its coordinates are 14.8°S 90°E, and it covers 2300 km at its broadest extent. It was named for a classic albedo feature of the planet and is in the Mare Tyrrhenum quadrangle of Mars. Tyrrhena Terra is typical of the southern Martian terrae, with heavily cratered highlands and other rugged terrain. It contains the large volcano Tyrrhena Patera, one of the oldest volcanoes on Mars. Its largest crater is Herschel. Licus Vallis and the Ausonia Montes are other major features in the region. Some channels and dunes are visible in Tyrrhena Terra, as shown in the images below.

Aeolian landforms are features produced by either the erosive or depositive action of the wind. These features may be built up from sand or snow, or eroded into rock, snow, or ice. Aeolian landforms are commonly observed in sandy deserts and on frozen lakes or sea ice and have been observed and studied across Earth and on other planets, including Mars and Pluto

<span class="mw-page-title-main">Desert</span> Area of land where little precipitation occurs

A desert is a barren area of landscape where little precipitation occurs and, consequently, living conditions are hostile for plant and animal life. The lack of vegetation exposes the unprotected surface of the ground to denudation. About one-third of the land surface of the Earth is arid or semi-arid. This includes much of the polar regions, where little precipitation occurs, and which are sometimes called polar deserts or "cold deserts". Deserts can be classified by the amount of precipitation that falls, by the temperature that prevails, by the causes of desertification or by their geographical location.

Green is an impact crater in the Argyre quadrangle of Mars. It is named after Nathan E. Green, a British astronomer (1823-1899).

Transverse aeolian ridges (TARs) are visually bright features commonly found in topographic depressions on Mars. These small-scale and relict bedforms were first seen in narrow-angle images from the Mars Orbiter Camera (MOC) and were called “ridges” to preserve both dunes and ripples as formative mechanisms. While TARs are widespread on Mars, their formation, age, composition, and role in past Martian sediment cycles remain poorly constrained.

<span class="mw-page-title-main">Niveo-aeolian deposition</span> Deposition of sediments onto snow or ice

Niveo-aeolian or cryo-aeolian deposition is the process by which fine-grained sediments are transported by wind and deposited on or mixed with snow or ice. The wind sweeps the snow and sand grains into aeolian landforms such as ripples, and further sorts the snow and ice grains into distinct layers. When snow melts or sublimates, the sediments are redeposited onto the surface below., forming patterns known as denivation features.

<span class="mw-page-title-main">Hyperboreae Undae</span> Martian dune field

Hyperboreae Undae is one of the largest and densest dune fields of Planum Boreum, the Martian North Pole. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU in 1988. It extends from latitude 77.12°N to 82.8°N and from longitude 302.92°E to 316.02°E. Its centre is at latitude 79.96°N, longitude 49.49°W, and has a diameter of 463.65 kilometres (288.10 mi).

The Bagnold Dunes is a 35-kilometre-long (22 mi) group of dark grey dunes in the Gale Crater on Mars. They are named after Ralph Alger Bagnold, who crossed the Libyan Desert and was one of the first explorers to acquire a deep understanding of the physics behind sand dunes. The dunes migrate around 0.4 metres (1.3 ft) every Earth year.

References

  1. Bagnold, Ralph Alger (1941). The Physics of Blown Sand and Desert Dunes. 265 pages. London: Methuen.
  2. Ball, Philip (2009). "In Retrospect: the physics of sand dunes". Nature. 457 (7233): 1084–1085. Bibcode:2009Natur.457.1084B. doi: 10.1038/4571084a .
  3. Tsoar, H. (1994). "Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen". Progress in Physical Geography. 18 (1): 91–96. doi:10.1177/030913339401800105. S2CID   128754401.
  4. Bagnold, Ralph Alger (2005). The Physics of Blown Sand and Desert Dunes. 320 pages. New York: Dover Publications.
  5. 1 2 3 4 5 Bagnold, R. A. (1971). The Physics of Blown Sand and Desert Dunes. London: Chapman & Hall. doi:10.1007/978-94-009-5682-7. ISBN   978-94-009-5684-1 . Retrieved 20 October 2023.
  6. Svasek, J. N.; Terwindt, J. H. J. (1974). "Measurements of sand transport by wind on a natural beach". Sedimentology. 21 (2): 311–322. doi:10.1111/j.1365-3091.1974.tb02061.x. ISSN   0037-0746.
  7. Tsoar, Haim (1994). "Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen". Progress in Physical Geography: Earth and Environment. 18 (1): 91–96. doi:10.1177/030913339401800105. ISSN   0309-1333 . Retrieved 20 October 2023.
  8. Cox, Percy; Sandford, K. S.; Cornish, Vaughan; Spencer, L. J.; Kitson, Albert E.; Bagnold, R. A. (1935). "The Movement of Desert Sand: Discussion". The Geographical Journal. 85 (4): 365–369. doi:10.2307/1785594. ISSN   0016-7398 . Retrieved 20 October 2023.
  9. McEwan, I. K. (1993). "Bagnold's kink: A physical feature of a wind velocity profile modified by blown sand?". Earth Surface Processes and Landforms. 18 (2): 145–156. doi:10.1002/esp.3290180206 . Retrieved 20 October 2023.
  10. Barndorff-Nielsen, Ole E.; Blæsild, Preben; Jensen, Jens Ledet; Sørensen, Michael (1985), Atkinson, Anthony C.; Fienberg, Stephen E. (eds.), "The Fascination of Sand", A Celebration of Statistics, New York, NY: Springer New York, pp. 57–87, doi:10.1007/978-1-4613-8560-8_4, ISBN   978-1-4613-8562-2 , retrieved 20 October 2023
  11. Sagan, Carl; Bagnold, R. A. (1975). "Fluid transport on Earth and aeolian transport on Mars". Icarus. 26 (2): 209–218. doi:10.1016/0019-1035(75)90080-9. ISSN   0019-1035 . Retrieved 20 October 2023.
  12. O'Connell‐Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J. (2017). "APXS‐derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average". Journal of Geophysical Research: Planets. 122 (12): 2623–2643. doi: 10.1002/2017JE005268 . ISSN   2169-9097.
  13. Bridges, Nathan T.; Ehlmann, Bethany L. (2018). "The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue". Journal of Geophysical Research: Planets. 123 (1): 3–19. doi: 10.1002/2017JE005401 . ISSN   2169-9097 . Retrieved 20 October 2023.
  14. Baker, Mariah M.; Lapotre, Mathieu G. A.; Minitti, Michelle E.; Newman, Claire E.; Sullivan, Robert; Weitz, Catherine M.; Rubin, David M.; Vasavada, Ashwin R.; Bridges, Nathan T.; Lewis, Kevin W. (2018). "The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity Rover". Geophysical Research Letters. 45 (17): 8853–8863. doi: 10.1029/2018GL079040 . ISSN   0094-8276 . Retrieved 20 October 2023.
  15. O'Connell-Cooper, Catherine. "Recap of the Bagnold Dune Investigation". NASA Mars Exploration. Retrieved 20 October 2023.