The Theory of Island Biogeography

Last updated
The Theory of Island Biogeography
The Theory of Island Biogeography, first edition.jpg
Cover of the first edition
Authors Robert MacArthur
Edward O. Wilson
IllustratorJohn Kyrk
CountryUnited States
LanguageEnglish
Subject Insular biogeography
Publisher Princeton University Press
Publication date
1967
Media typePrint (Hardcover and Paperback)
Pages203
ISBN 0691088365

The Theory of Island Biogeography is a 1967 book by the ecologist Robert MacArthur and the biologist Edward O. Wilson. [1] It is widely regarded as a seminal work in island biogeography and ecology. The Princeton University Press reprinted the book in 2001 as a part of the "Princeton Landmarks in Biology" series. [1] The book popularized the theory that insular biota maintain a dynamic equilibrium between immigration and extinction rates. The book also popularized the concepts and terminology of r/K selection theory. [2]

Contents

Background

The Theory of Island Biogeography has its roots in Wilson's work on the ants of Melanesia. MacArthur synthesized Wilson's ideas about competition, colonization and equilibrium into a simple graphical representation of immigration and extinction curves, from which one can determine the equilibrial species number on an island. [3] MacArthur and Wilson's ideas were first presented in a paper published in 1963, [4] and were further developed into a book. [3]

Summary

Introduction

In the introductory chapter, MacArthur and Wilson highlight the significance of studying island biogeography. Since islands are less complex and more numerous than larger ecosystems, islands provide better opportunities to develop insights and perform replicable field research. Given that insular microcosms are common to all ecosystems, principles from island biogeography can be applied generally.

This graph portrays the immigration rate of new species and the extinction rate of resident species versus the number of species present on an island. The intersection point gives the equilibrial species number. Equilibrium Model for Number of Species on an Island.png
This graph portrays the immigration rate of new species and the extinction rate of resident species versus the number of species present on an island. The intersection point gives the equilibrial species number.

Area-diversity pattern

In Chapters 2 and 3, MacArthur and Wilson postulate that insular species richness depends on island size and isolation from source regions. The authors present an equilibrium model that is based on the following concept: when there is an addition of the number of species on an island, the island's immigration rate of new species will decrease while the extinction rate of resident species will increase. MacArthur and Wilson thus assume that there will be an equilibrial point where the immigration rate equals the extinction rate. They further hypothesize that an increase in island size will lower extinction curves while a decrease in distance between the island and the source region will raise immigration curves. Since the intersection of immigration and extinction rate curves determines the species number, the authors predict that larger islands will have more species than smaller islands (assuming these islands are comparably isolated) and isolated islands will have fewer species than islands more proximal to source regions (assuming these islands are equally large). There is additional discourse on how insular clusters and stepping stones affect this model.

Modeling colonization and dispersion

Chapter 4 discusses survivorship theory. The authors describe a model which states that the probability for successful colonization is dependent on birth rate, death rate, and carrying capacity of the environment. From this model, conclusions are made on the average survival time for a propagule's offspring, the average survival time of a saturated population, and characteristics of successful propagules.

In Chapter 5, MacArthur and Wilson examine why species can be excluded from insular environments and how the niche of a species changes after introduction. The authors surmise that pioneering species can be excluded for the following reasons: the island has saturated levels of pre-existing competition, the pioneering species cannot maintain a population large enough to avoid extinction, and the island hosts too many or too few natural predators. When a species colonizes a new area, the authors state that the species will either shift, expand or contract its realized niche.

Chapter 6 is a theoretical exploration of dispersal models. The authors consider how insular stepping stones affect the dispersion of species—particularly, the effects that size and isolation of stepping stones have on dispersion. Further consideration is given to how dispersal curves and average distance travelled by pioneers impacts this study.

In Chapter 7, the authors state that there are generally three consecutive phases to the evolution of populations after colonization. Initially, there is a trend for colonizers to evolve from r-strategists into K-strategists. The founder effect may also influence colonizing populations during this first phase. The second phase is marked by long term adaptations to the local environment. In this period, abilities for dispersal are commonly reduced, and colonizers will either differentiate or assimilate with competing species. In the third phase, the evolution of colonizing populations may result in speciation and/or adaptive radiation.

Field testing

The insular biota equilibrium theory was experimentally tested by E. O. Wilson and his then-graduate student Daniel Simberloff in six small mangrove islands in the Florida Keys. The islands were fumigated to clear the arthropod populations. Immigration of species onto the island was then observed in a first and second year census. Wilson and Simberloff confirmed that there was an inverse relationship between the number of species on an island and the distance to the source region as predicted in The Theory of Island Biogeography. [5]

Impact

Applications

MacArthur and Wilson's theory of island biogeography has been widely applied outside of island ecosystems. For microbiota, the theory has been applied to the distribution of ectomycorrihzal fungi on trees, [6] the distribution of bacteria in water-filled treeholes, [7] and the distribution of fungi among shrubs. [8] While for flora and fauna, the theory's predictions have been realized with the species richness of plants on mountains [9] and with the species richness of aquatic snails in bodies of water. [10] Novel applications looked at plants as islands for insect species [11] and the dependence of the species richness of mites on the areas of the host ranges of rodent species. [12] MacArthur and Wilson's work has been used as a basis in other ecological theories, notably the unified neutral theory of biodiversity, [13] and has been foundational for the fields of landscape ecology, invasion biology, and conservation biology. [3] [1]

Criticism

Several studies have disputed the underlying assumptions in MacArthur and Wilson's theory of island biogeography: specifically, the interchangeability of species and islands, the independence between immigration and extinction, and the insignificance of non-equilibrial processes. [14] The Island Biogeography theory can also be applied to habitat fragmentation. [15] However, limitations and nuances like edge effects, matrix effects, and community level changes inhibit this theory from being universally applied to all systems. [15] In the 2001 preface, Wilson stated that "the flaws of the book lie in its oversimplification and incompleteness". [1]

Legacy

In 2007, a symposium was held at Harvard University honoring the fortieth anniversary of The Theory of Island Biogeography. [3] Following this conference, a collection of papers was published in the book The Theory of Island Biogeography Revisited. [3]

The SLOSS Debate is based on the authors suggestion that a single large reserve was preferable to several small reserves.

See also

Related Research Articles

<span class="mw-page-title-main">Theoretical ecology</span>

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

<span class="mw-page-title-main">Biogeography</span> Study of the distribution of species and ecosystems in geographic space and through geological time

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals. Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

<span class="mw-page-title-main">Unified neutral theory of biodiversity</span> Theory of evolutionary biology

The unified neutral theory of biodiversity and biogeography is a theory and the title of a monograph by ecologist Stephen P. Hubbell. It aims to explain the diversity and relative abundance of species in ecological communities. Like other neutral theories of ecology, Hubbell assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that niche differences do not influence abundance and the abundance of each species follows a random walk. The theory has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.

<span class="mw-page-title-main">Population ecology</span> Study of the dynamics of species populations and how these populations interact with the environment

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.

<span class="mw-page-title-main">Metapopulation</span> Group of separated yet interacting ecological populations

A metapopulation consists of a group of spatially separated populations of the same species which interact at some level. The term metapopulation was coined by Richard Levins in 1969 to describe a model of population dynamics of insect pests in agricultural fields, but the idea has been most broadly applied to species in naturally or artificially fragmented habitats. In Levins' own words, it consists of "a population of populations".

Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.

Ecology is a new science and considered as an important branch of biological science, having only become prominent during the second half of the 20th century. Ecological thought is derivative of established currents in philosophy, particularly from ethics and politics.

<span class="mw-page-title-main">SLOSS debate</span>

The SLOSS debate was a debate in ecology and conservation biology during the 1970's and 1980's as to whether a single large or several small (SLOSS) reserves were a superior means of conserving biodiversity in a fragmented habitat. Since its inception, multiple alternate theories have been proposed. There have been applications of the concept outside of the original context of habitat conservation.

<span class="mw-page-title-main">Biological Dynamics of Forest Fragments Project</span>

The Biological Dynamics of Forest Fragments Project is a large-scale ecological experiment looking at the effects of habitat fragmentation on tropical rainforest. The experiment which was established in 1979 is located near Manaus in the Brazilian Amazon rainforest. The project is jointly managed by the Amazon Biodiversity Center and the Brazilian Institute for Research in the Amazon (INPA).

<span class="mw-page-title-main">Daniel Simberloff</span> American ecologist and professor

Daniel Simberloff is an American biologist and ecologist. He earned his Ph.D. from Harvard University in 1969. He is currently Gore Hunger Professor of Environmental Science at the University of Tennessee, editor-in-chief of the journal Biological Invasions, and a member of the National Academy of Sciences.

<span class="mw-page-title-main">Robert H. MacArthur</span> Ecologist

Robert Helmer MacArthur was a Canadian-born American ecologist who made a major impact on many areas of community and population ecology. He is considered a founder of ecology and evolutionary biology.

<span class="mw-page-title-main">Species–area relationship</span> Relationship between the size of an area or habitat and the number of species it can support

The species–area relationship or species–area curve describes the relationship between the area of a habitat, or of part of a habitat, and the number of species found within that area. Larger areas tend to contain larger numbers of species, and empirically, the relative numbers seem to follow systematic mathematical relationships. The species–area relationship is usually constructed for a single type of organism, such as all vascular plants or all species of a specific trophic level within a particular site. It is rarely if ever, constructed for all types of organisms if simply because of the prodigious data requirements. It is related but not identical to the species discovery curve.

Colonisation or colonization is the process in biology by which a species spreads to new areas. Colonisation often refers to successful immigration where a population becomes integrated into an ecological community, having resisted initial local extinction. In ecology, it is represented by the symbol λ to denote the long-term intrinsic growth rate of a population.

A population model is a type of mathematical model that is applied to the study of population dynamics.

An ecological metacommunity is a set of interacting communities which are linked by the dispersal of multiple, potentially interacting species. The term is derived from the field of community ecology, which is primarily concerned with patterns of species distribution, abundance and interactions. Metacommunity ecology combines the importance of local factors and regional factors to explain patterns of species distributions that happen in different spatial scales.

<span class="mw-page-title-main">Body size and species richness</span>

The body size-species richness distribution is a pattern observed in the way taxa are distributed over large spatial scales. The number of species that exhibit small body size generally far exceed the number of species that are large-bodied. Macroecology has long sought to understand the mechanisms that underlie the patterns of biodiversity, such as the body size-species richness pattern.

Island ecology is the study of island organisms and their interactions with each other and the environment. Islands account for nearly 1/6 of earth’s total land area, yet the ecology of island ecosystems is vastly different from that of mainland communities. Their isolation and high availability of empty niches lead to increased speciation. As a result, island ecosystems comprise 30% of the world’s biodiversity hotspots, 50% of marine tropical diversity, and some of the most unusual and rare species. Many species still remain unknown.

In ecology, extinction debt is the future extinction of species due to events in the past. The phrases dead clade walking and survival without recovery express the same idea.

Seascape ecology is a scientific discipline that deals with the causes and ecological consequences of spatial pattern in the marine environment, drawing heavily on conceptual and analytical frameworks developed in terrestrial landscape ecology.

The rescue effect is a phenomenon which was first described by Brown and Kodric-Brown, and is commonly used in metapopulation dynamics and many other disciplines in ecology. This populational process explains how the migration of individuals can increase the persistence of small isolated populations by helping to stabilize a metapopulation, thus reducing the chances of extinction. In other words, immigration can lead to the recolonization of previously extinct patches, promoting the long-term persistence of the network of populations.

References

  1. 1 2 3 4 MacArthur RH, Wilson EO (2001). The theory of island biogeography. Princeton, N.J: Princeton University Press. ISBN   978-0-691-08836-5. OCLC   45202069.
  2. Pianka ER (November 1970). "On r- and K-Selection". The American Naturalist. 104 (940): 592–597. doi:10.1086/282697. S2CID   83933177.
  3. 1 2 3 4 5 Wilson EO (2010). "Island Biogeography in the 1960s". In Losos JB, Ricklefs RE (eds.). The Theory of Island Biogeography Revisited. Princeton University Press. pp. 1–12. ISBN   9780691136530. JSTOR   j.ctt7s5m6.6.
  4. MacArthur RH, Wilson EO (1963-12-01). "An Equilibrium Theory of Insular Zoogeography". Evolution. 17 (4): 373–387. doi: 10.1111/j.1558-5646.1963.tb03295.x .
  5. Simberloff DS, Wilson EO (1970). "Experimental zoogeography of islands. A two‐year record of colonization". Ecology. 51 (5): 934–937. doi:10.2307/1933995. JSTOR   1933995.
  6. Glassman SI, Lubetkin KC, Chung JA, Bruns TD (February 2017). "The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree "islands" at a fine scale". Ecosphere. 8 (2): e01677. doi: 10.1002/ecs2.1677 .
  7. Bell T, Ager D, Song JI, Newman JA, Thompson IP, Lilley AK, van der Gast CJ (June 2005). "Larger islands house more bacterial taxa". Science. 308 (5730): 1884. doi:10.1126/science.1111318. PMID   15976296. S2CID   30630640.
  8. Belisle M, Peay KG, Fukami T (May 2012). "Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub". Microbial Ecology. 63 (4): 711–8. doi:10.1007/s00248-011-9975-8. PMC   4108428 . PMID   22080257.
  9. Riebesell JF (May 1982). "Arctic-Alpine Plants on Mountaintops: Agreement with Island Biogeography Theory". The American Naturalist. 119 (5): 657–674. doi:10.1086/283941. S2CID   85065279.
  10. Lassen HH (March 1975). "The diversity of freshwater snails in view of the equilibrium theory of island biogeography". Oecologia. 19 (1): 1–8. Bibcode:1975Oecol..19....1L. doi:10.1007/bf00377585. PMID   28308826. S2CID   8830105.
  11. Opler PA (1974). Oaks as evolutionary islands for leaf-mining insects. American Scientist. 62: 67-73.
  12. Dritschilo W, Cornell H, Nafus D, O'Connor B (1975). Insular biogeography: of mice and mites. Science. 190 (4213):467-9.
  13. Hubbell SP (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press. ISBN   9781400837526. OCLC   733057107.
  14. Brown JH, Lomolino MV (January 2000). "Concluding remarks: historical perspective and the future of island biogeography theory". Global Ecology and Biogeography. 9 (1): 87–92. doi:10.1046/j.1365-2699.2000.00186.x. ISSN   1466-822X.
  15. 1 2 Laurance, William F. (2008-07-01). "Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory". Biological Conservation. 141 (7): 1731–1744. doi:10.1016/j.biocon.2008.05.011. ISSN   0006-3207.