Thermal desorption

Last updated

Thermal desorption is an environmental remediation technology that utilizes heat to increase the volatility of contaminants such that they can be removed (separated) from the solid matrix (typically soil, sludge or filter cake). The volatilized contaminants are then either collected or thermally destroyed. A thermal desorption system therefore has two major components; the desorber itself and the offgas treatment system. Thermal desorption is not incineration.

Contents

History

Thermal desorption first appeared as an environmental treatment technology in 1985 when it was specified in the Record of Decision for the McKin Company Superfund site within the Royal River watershed in Maine. [1]

It is frequently referred to as "low temp" thermal desorption to differentiate it from high temperature incineration. An early direct fired thermal desorption project was the treatment of 8000 tons of toxaphene (a chlorinated pesticide) contaminated sandy soil at the S&S Flying Services site in Marianna Florida in 1990, with later projects exceeding 170,000 tons at the Cape Fear coal tar site in 1999. A status report from the United States Environmental Protection Agency shows that thermal desorption has been used at 69 Superfund sites through FY2000. In addition, hundreds of remediation projects have been completed using thermal desorption at non-Superfund sites.

For in-situ on-site treatment options, only incineration and stabilization have been used at more Superfund sites. Incineration suffers from poor public acceptance. Stabilization does not provide a permanent remedy, since the contaminants are still on site. Thermal desorption is a widely accepted technology that provides a permanent solution at an economically competitive cost.

The world’s first large-scale thermal desorption for treatment of mercury-containing wastes was erected in Wölsau, for the remediation of the Chemical Factory Marktredwitz (founded in 1788) was considered to be the oldest in Germany. Operation commenced in October 1993 including the first optimising phase. 50,000 tons of mercury-contaminated solid wastes were treated successfully between August 1993 and June 1996. 25 metric tons of mercury had been recovered from soil and rubble. Unfortunately the Marktredwitz plant is often misunderstood in the literature as a pilot-scale plant only.

Desorbers

Numerous desorber types are available today. Some of the more common types are listed below.

Most indirect fired rotary systems use an inclined rotating metallic cylinder to heat the feed material. The heat transfer mechanism is usually conduction through the cylinder wall. In this type of system neither the flame nor the products of combustion can contact the feed solids or the offgas. Think of it as a rotating pipe inside a furnace with both ends sticking outside of the furnace. The cylinder for full-scale transportable systems is typically five to eight feet in diameter with heated lengths ranging from twenty to fifty feet. With a carbon steel shell, the maximum solids temperature is around 1,000 °F, while temperatures of 1,800 °F with special alloy cylinders are attainable. Total residence time in this type of desorber normally ranges from 30 to 120 minutes. Treatment capacities can range from 2 to 30 tons per hour for transportable units.

Direct-fired rotary desorbers have been used extensively over the years for petroleum contaminated soils and soils contaminated with Resource Conservation and Recovery Act hazardous wastes as defined by the United States Environmental Protection Agency. A 1992 paper on treating petroleum contaminated soils estimated that between 20 and 30 contractors have 40 to 60 rotary dryer systems available. Today, it is probably closer to 6 to 10 contractors with 15 to 20 portable systems commercially available. The majority of these systems utilize a secondary combustion chamber (afterburner) or catalytic oxidizer to thermally destroy the volatilized organics. A few of these systems also have a quench and scrubber after the oxidizer which allows them to treat soils containing chlorinated organics such as solvents and pesticides. The desorbing cylinder for full-scale transportable systems is typically four to ten feet in diameter with heated lengths ranging from twenty to fifty feet. The maximum practical solids temperature for these systems is around 750 to 900 °F depending on the material of construction of the cylinder. Total residence time in this type of desorber normally ranges from 3 to 15 minutes. Treatment capacities can range from 6 to over 100 tons per hour for transportable units.

Heated screw systems are also an indirect heated system. Typically they use a jacketed trough with a double auger that intermeshes. The augers themselves frequently contain passages for the heating medium to increase the heat transfer surface area. Some systems use electric resistance heaters instead of a heat transfer media and may employ a single auger in each housing. The augers can range from 12 to 36 inches in diameter for full-scale systems, with lengths up to 20 feet. The auger/trough assemblies can be connected in parallel and/or series to increase throughput. Full scale capabilities up to 4 tons per hour have been demonstrated. This type of system has been most successful treating refinery wastes.

In the early days, there was a continuous infrared system that is no longer in common use. In theory, microwaves would be an excellent technical choice since uniform and accurately controlled heating can be achieved with no heat transfer surface fouling problems. One can only guess that capital and/or energy costs have prevented the development of a microwave thermal desorber at the commercial scale.

Offgas treatment

There are only three basic options for offgas treatment available. The volatilized contaminants in the offgas can either be discharged to atmosphere, collected or destroyed. In some cases, both a collection and destruction system are employed. In addition to managing the volatilized components, the particulate solids (dust) that exit the desorber must also be removed from the offgas.

When a collection system is used, the offgas must be cooled to condense the bulk of the volatilized components into a liquid. The offgas will exit most desorbers in the 350–900 °F range. The offgas is then typically cooled to somewhere between 120 and 40 °F to condense the bulk of the volatilized water and organic contaminants. Even at 40 °F, there may be measurable amounts of non-condensed organics. For this reason, after the condensation step, further treatment of the offgas is usually required. The cooled offgas may be treated by carbon adsorption, or thermal oxidation. Thermal oxidation can be accomplished using a catalytic oxidizer, an afterburner or by routing the offgas to the combustion heat source for the desorber. The volume of gas requiring treatment for indirect fired desorbers is a fraction of that required for a direct fired desorber. This requires smaller air pollution control trains for the gaseous process vent emissions. Some thermal desorption systems recycle the carrier gas, thereby further reducing the volume of gaseous emissions.

The condensed liquid from cooling the offgas is separated into organic and aqueous fractions. The water is either disposed of or used to cool the treated solids and prevent dusting. The condensed liquid organic is removed from the site. Depending on its composition, the liquid is either recycled as a supplemental fuel or destroyed in a fixed base incinerator. A thermal desorber removing 500 mg/kg of organic contaminants from 20,000 tons of soil will produce less than 3,000 US gallons (11,000 L) of liquid organic. In essence 20,000 tons of contaminated soil could be reduced to less than one tank truck of extracted liquid residue for off-site disposal.

Desorbers using offgas destruction systems use combustion to thermally destroy the volatilized organics components forming CO, CO2, NOx, SOx and HCl. The destruction unit may be called an afterburner, secondary combustion chamber, or thermal oxidizer. Catalytic oxidizers may also be used if the organic halide content of the contaminated media is low enough. Regardless of the name, the destruction unit is used to thermally destroy the hazardous organic constituents that were removed (volatilized) from the soil or waste.

See also

Related Research Articles

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

For environmental remediation, Low-temperature thermal desorption (LTTD), also known as low-temperature thermal volatilization, thermal stripping, and soil roasting, is an ex-situ remedial technology that uses heat to physically separate petroleum hydrocarbons from excavated soils. Thermal desorbers are designed to heat soils to temperatures sufficient to cause constituents to volatilize and desorb from the soil. Although they are not designed to decompose organic constituents, thermal desorbers can, depending upon the specific organics present and the temperature of the desorber system, cause some organic constituents to completely or partially decompose. The vaporized hydrocarbons are generally treated in a secondary treatment unit prior to discharge to the atmosphere. Afterburners and oxidizers destroy the organic constituents. Condensers and carbon adsorption units trap organic compounds for subsequent treatment or disposal.

Soil vapor extraction (SVE) is a physical treatment process for in situ remediation of volatile contaminants in vadose zone (unsaturated) soils. SVE is based on mass transfer of contaminant from the solid (sorbed) and liquid phases into the gas phase, with subsequent collection of the gas phase contamination at extraction wells. Extracted contaminant mass in the gas phase is treated in aboveground systems. In essence, SVE is the vadose zone equivalent of the pump-and-treat technology for groundwater remediation. SVE is particularly amenable to contaminants with higher Henry’s Law constants, including various chlorinated solvents and hydrocarbons. SVE is a well-demonstrated, mature remediation technology and has been identified by the U.S. Environmental Protection Agency (EPA) as presumptive remedy.

A thermal blanket is a device used in thermal desorption to clean soil contamination. The primary function of a thermal blanket is to heat the soil to the boiling point of the contaminants so that they break down. A vacuum pulls the resulting gas into a separate air cleaner that may use various methods, such as carbon filters and high-heat ovens, to completely destroy the contaminants. Aside from evaporation and volatilization, the contaminants may also be removed from the soil through other mechanisms such as steam distillation, pyrolysis, oxidation, and other chemical reactions.

<span class="mw-page-title-main">Havertown Superfund</span> Superfund site in Pennsylvania

Havertown Superfund is a 13-acre polluted groundwater site in Havertown, Pennsylvania contaminated by the dumping of industrial waste by National Wood Preservers from 1947 to 1991. The state first became aware of the pollution in 1962 and initiated legal action against the owners in 1973 to force them to cleanup the site. The Environmental Protection Agency (EPA) ranked the site the eighth worst cleanup project in the United States. The site was added to the National Priorities List in 1983 and designated as a Superfund cleanup site in the early 1990s. Remediation and monitoring efforts are ongoing and the EPA transferred control of the site to the Pennsylvania Department of Environmental Protection in 2013.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

<span class="mw-page-title-main">Electrical resistance heating</span> Environmental cleanup method

Electrical resistance heating (ERH) is an intensive in situ environmental remediation method that uses the flow of alternating current electricity to heat soil and groundwater and evaporate contaminants. Electric current is passed through a targeted soil volume between subsurface electrode elements. The resistance to electrical flow that exists in the soil causes the formation of heat; resulting in an increase in temperature until the boiling point of water at depth is reached. After reaching this temperature, further energy input causes a phase change, forming steam and removing volatile contaminants. ERH is typically more cost effective when used for treating contaminant source areas.

The Lipari Landill is an inactive landfill on a 6-acre (2.4 ha) former gravel pit in Mantua Township, New Jersey. It was used from 1958 to 1971 as a dump site for household and industrial wastes. Toxic organic compounds and heavy metals dumped at the site have percolated into the ground water and leached into lakes and streams in the surrounding area. The site has been identified as the worst toxic dump in the United States and was ranked at the top of the United States Environmental Protection Agency's Superfund eligibility list.

Pemaco is a former chemical mixing company and facility located on the Los Angeles River in Maywood, a small city in southeastern Los Angeles County, California.

<span class="mw-page-title-main">Electro Thermal Dynamic Stripping Process</span>

Electro Thermal Dynamic Stripping Process (ET-DSP) is a patented in situ thermal environmental remediation technology, created by McMillan-McGee Corporation, for cleaning contaminated sites. ET-DSP uses readily available three phase electric power to heat the subsurface with electrodes. Electrodes are placed at various depths and locations in the formation. Electric current to each electrode is controlled continuously by computer to uniformly heat the target contamination zone.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

In situ thermal desorption (ISTD) is an intensive thermally enhanced environmental remediation technology that uses thermal conductive heating (TCH) elements to directly transfer heat to environmental media. The ISTD/TCH process can be applied at low (<100 °C), moderate (~100 °C) and higher (>100 °C) temperature levels to accomplish the remediation of a wide variety of contaminants, both above and below the water table. ISTD/TCH is the only major in situ thermal remediation (ISTR) technology capable of achieving subsurface target treatment temperatures above the boiling point of water and is effective at virtually any depth in almost any media. TCH works in tight soils, clay layers, and soils with wide heterogeneity in permeability or moisture content that are impacted by a broad range of volatile and semi-volatile organic contaminants.

<span class="mw-page-title-main">The Waste Disposal Inc. Superfund site</span> Waste disposal

The Waste Disposal Inc. Superfund site is an oil-related contaminated site in the highly industrialized city of Santa Fe Springs in Los Angeles County, California. It is approximately 38 acres (15 ha), with St Paul's high school immediately adjacent to the northeast corner of the site. Approximately 15,000 residents of Santa Fe Springs obtain drinking water from wells within three miles (4.8 km) of the site.

The Nebraska Ordnance Plant is a former United States Army ammunition plant located approximately ½ mile south of Mead, Nebraska and 30 miles west of Omaha, Nebraska in Saunders County. It originally extended across 17,250 acres (69.8 km2) producing weapons from 1942-45 after which the Army used it as a bomb factory during the Vietnam War. Environmental investigations in the 1980's found the soil and groundwater contaminated with the explosive RDX and the degreaser trichloroethylene. In 1990, federal agencies added the site to the National Priorities List as a Superfund site. Remediation included soil excavation and water treatment, the latter of which has been ongoing since 1997. Water is contained and treated at 4 treatment plants and the known plumes are monitored at hundreds of wells. The latest wells, dug deeper into the bedrock than previously, showed RDX and TCE above desired action levels in April 2016.

The A.O. Polymer manufacturing site is located in Sparta Township, New Jersey. This facility created special polymers, plastics, and resins. It was also used for reclaiming spent solvents. The facility's poor waste handling led to serious contamination of the ground. It also contaminated the water in the ground with volatile organic compounds. The site has been a threat to the Allentown aquifer, which provides drinking water to over 5,000 people. Initial clean ups started with getting rid of old drums and contaminants from their original disposal area. The company took them and decided to dispose of them elsewhere, thus not fixing the problem. Primary cleanups of the site were ongoing as of 2008. The EPA has been using water pumps to remove contaminants from the water in the ground. A soil extraction system has been put at their disposal to remove harmful contamination within the soil as well. All wells in the affected areas have been closed.

Brook Industrial Park (BIP) is an industrial area occupying 4.5 acres of the Borough of Bound Brook, New Jersey, in the United States of America. It is located on the northern bank of the Raritan River. Industrial, chemical and pesticide operations began in 1971 and eventually lead to the contamination of groundwater and exposure of workers to harmful dioxins. Throughout 1980 to 1988 the United States Environmental Protection Agency (EPA) and the New Jersey Department of Environmental Protection (NJDEP) conducted studies to determine if there were any threats being posed on the workers, community or environment by the BIP companies in their disposal of processed and stored chemicals.

Forest Waste Products is a 120-acre (49-hectare) Superfund site in Forest Township northwest of Otisville, Michigan.

References

  1. "Site Information McKin Company Superfund Site Gray Maine". United States Environmental Protection Agency. 1985-07-22. Retrieved 2009-07-21.

T. McGowan, T., R. Carnes and P. Hulon. Incineration of Pesticide-Contaminated Soil on a Superfund Site, paper on the S&S Flying Services Superfund Site remediation project, Marianna, FL, presented at HazMat '91 Conference, Atlanta, GA, October, 1991