Thermal laser stimulation represents a class of defect imaging techniques which employ a laser to produce a thermal variation in a semiconductor device. [1] This technique may be used for semiconductor failure analysis. There are four techniques associated with thermal laser stimulation: optical beam induced resistance change (OBIRCH), [2] thermally induced voltage alteration (TIVA)), [3] external induced voltage alteration (XIVA) [4] and Seebeck effect imaging (SEI)
Optical beam induced resistance change (OBIRCH) is an imaging technique which uses a laser beam to induce a thermal change in the device. Laser stimulation highlights differences in thermal characteristics between areas containing defects and areas which are defect-free. As the laser locally heats a defective area on a metal line which is carrying a current, the resulting resistance changes can be detected by monitoring the input current to the device. OBIRCH is useful for detecting electromigration effects resulting in open metal lines.
A constant voltage is applied to the device-under-test (DUT). An area of interest is selected on the device, and a laser beam is used to scan the area. The input current being drawn by the device is monitored for changes during this process. When a change in current is noted, the position of the laser at the time that the change occurred is marked on the image of the device.
When the laser beam strikes a location which does not contain a void, good thermal transmission exists and the change in electrical resistance is small. In areas containing voids, however, thermal transmission is impeded, resulting in a larger change in resistance. The degree of resistance change is displayed visually on an image of the device, with areas of higher resistance being displayed as bright spots. [5]
Thermally induced voltage alteration (TIVA) is an imaging technique which uses a laser beam to pinpoint the location of electrical shorts on a device. The laser induces local thermal gradients in the device, which result in changes to the amount of power that the device uses.
A laser is scanned over the surface of the device while it is under electrical bias. The device is biased using a constant current source, and the power supply pin voltage is monitored for changes. When the laser strikes an area containing a short circuit, localized heating occurs. This heating changes the resistance of the short, resulting in a change in power consumption of the device. These changes in power consumption are plotted onto an image of the device in locations corresponding to the position of the laser at the time that the change was detected. [6]
External induced voltage alteration (XIVA) maintains a constant voltage bias and constant current sensing on the device under test. When the scanning laser passes over a defective location, a sudden change in impedance is created. This would normally result in a change in current, however, the constant current choke prevents this from happening. The detection of these events allows the position of the defect to be determined. [7]
Seebeck effect imaging (SEI) uses a laser to generate thermal gradients in conductors. The thermal gradients induced generate corresponding electric potential gradients. This correlation of thermal and electric gradients is known as the Seebeck effect. The SEI technique is used to locate electrically floating conductors.
When the laser changes the thermal gradient of a floating conductor, its electrical potential changes. This change in potential will change the bias of any transistors connected to the floating conductor, which affects the heat dissipation of the device. These changes are mapped to a visual image of the device in order to physically locate the floating conductors. [8]
A proof-of-concept experiment was conducted at the University of Florida which demonstrated the possibility of using thermal laser stimulation to peer into SRAM chips and extract sensitive information. [9]
A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.
A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.
A thermopile is an electronic device that converts thermal energy into electrical energy. It is composed of several thermocouples connected usually in series or, less commonly, in parallel. Such a device works on the principle of the thermoelectric effect, i.e., generating a voltage when its dissimilar metals (thermocouples) are exposed to a temperature difference.
The Seebeck coefficient of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K).
In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.
Jean Charles Athanase Peltier was a French physicist. He was originally a watch dealer, but at the age of 30 began experiments and observations in physics.
Failure analysis is the process of collecting and analyzing data to determine the cause of a failure, often with the goal of determining corrective actions or liability. According to Bloch and Geitner, ”machinery failures reveal a reaction chain of cause and effect… usually a deficiency commonly referred to as the symptom…”. Failure analysis can save money, lives, and resources if done correctly and acted upon. It is an important discipline in many branches of manufacturing industry, such as the electronics industry, where it is a vital tool used in the development of new products and for the improvement of existing products. The failure analysis process relies on collecting failed components for subsequent examination of the cause or causes of failure using a wide array of methods, especially microscopy and spectroscopy. Nondestructive testing (NDT) methods are valuable because the failed products are unaffected by analysis, so inspection sometimes starts using these methods.
Electron-beam-induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is most commonly used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties. EBIC is similar to cathodoluminescence in that it depends on the creation of electron–hole pairs in the semiconductor sample by the microscope's electron beam. This technique is used in semiconductor failure analysis and solid-state physics.
The laser voltage probe (LVP) is a laser-based voltage and timing waveform acquisition system which is used to perform failure analysis on flip-chip integrated circuits. The device to be analyzed is de-encapsulated in order to expose the silicon surface. The silicon substrate is thinned mechanically using a back side mechanical thinning tool. The thinned device is then mounted on a movable stage and connected to an electrical stimulus source. Signal measurements are performed through the back side of the device after substrate thinning has been performed. The device being probed must be electrically stimulated using a repeating test pattern, with a trigger pulse provided to the LVP as reference. The operation of the LVP is similar to that of a sampling oscilloscope.
The electron beam prober is a specialized adaption of a standard scanning electron microscope (SEM) that is used for semiconductor failure analysis. While a conventional SEM may be operated in a voltage range of 10–30 keV, the e-beam Prober typically operates at 1 keV. The e-beam prober is capable of measuring voltage and timing waveforms on internal semiconductor signal structures. Waveforms may be measured on metal line, polysilicon and diffusion structures that have an electrically active, changing signal. The operation of the prober is similar to that of a sampling oscilloscope. A continuously looping, repeating test pattern must be applied to the device-under-test (DUT). E-beam probers are used primarily for front side semiconductor analysis. With the advent of flip-chip technology, many e-beam probers have been replaced with back side analysis instruments.
Charge-induced voltage alteration (CIVA) is a technique which uses a scanning electron microscope to locate open conductors on CMOS integrated circuits. This technique is used in semiconductor failure analysis.
Light-induced voltage alteration (LIVA) is a semiconductor analysis technique that uses a laser or infrared light source to induce voltage changes in a device while scanning the beam of light across its surface. The technique relies upon the generation of electron-hole pairs in the semiconductor material when exposed to photons.
Laser-assisted device alteration (LADA) is a laser-based timing analysis technique used in the failure analysis of semiconductor devices. The laser is used to temporarily alter the operating characteristics of transistors on the device.
A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux directly into electrical energy through a phenomenon called the Seebeck effect. Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient.
In condensed matter physics, scanning SQUID microscopy is a technique where a superconducting quantum interference device (SQUID) is used to image surface magnetic field strength with micrometre-scale resolution. A tiny SQUID is mounted onto a tip which is then rastered near the surface of the sample to be measured. As the SQUID is the most sensitive detector of magnetic fields available and can be constructed at submicrometre widths via lithography, the scanning SQUID microscope allows magnetic fields to be measured with unparalleled resolution and sensitivity. The first scanning SQUID microscope was built in 1992 by Black et al. Since then the technique has been used to confirm unconventional superconductivity in several high-temperature superconductors including YBCO and BSCCO compounds.
Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.
Nanoprobing is method of extracting device electrical parameters through the use of nanoscale tungsten wires, used primarily in the semiconductor industry. The characterization of individual devices is instrumental to engineers and integrated circuit designers during initial product development and debug. It is commonly utilized in device failure analysis laboratories to aid with yield enhancement, quality and reliability issues and customer returns. Commercially available nanoprobing systems are integrated into either a vacuum-based scanning electron microscope (SEM) or atomic force microscope (AFM). Nanoprobing systems that are based on AFM technology are referred to as Atomic Force nanoProbers (AFP).
Thermopile laser sensors are used for measuring laser power from a few µW to several W. The incoming radiation of the laser is converted into heat energy at the surface. This heat input produces a temperature gradient across the sensor. Making use of the thermoelectric effect a voltage is generated by this temperature gradient. Since the voltage is directly proportional to the incoming radiation, it can be directly related to the irradiation power.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.