Thermoplastic vulcanizates

Last updated

Thermoplastic vulcanizates (TPV) are dynamically vulcanized alloys consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. They are part of the thermoplastic elastomer (TPE) family of polymers but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. There are almost 100 grades in the S portfolio that are used globally in the automotive, household appliance, electrical, construction, and healthcare markets. The name Santoprene was trademarked in 1977 [1] by Monsanto, and the trademark is now owned by Celanese. Similar material is available from Elastron [2] and others. [3]

Contents

Overview

TPV was created after several years of research and development aimed at finding new materials for injection-molded tires. Although the search for a new tire material was unsuccessful, it resulted in the development of TPV, which combines the characteristics of vulcanized rubber with the processing properties of thermoplastics. The first sales of developmental products began in 1977, the same year it was registered by Monsanto, and it was fully commercialized in 1981. [4]

Part of the TPE family of polymers, TPV is the closest in elastomeric properties to EPDM thermoset rubber. TPVs have a combination of elastomeric properties, like compression and tension sets, coupled with aging performance and chemical resistance.

Early successes

Santoprene TPV had early application successes in the automotive sector, including rack and pinion boots, due to its flex life, fluid resistance, and sealability. In the appliance sector, a dishwasher sump boot made with Santoprene TPV provided good sealing and resistance to heat and fluids. Due to its sealing properties, Santoprene TPV was also successful in the domestic and high-rise construction sectors in applications such as window seals, caster wheels, tubing, and small hose parts, electrical connectors, and coatings for wire and cables. It was also used in the medical industry as a gasket on syringe plungers.

Chemistry

Santoprene TPV is a dynamically vulcanized alloy consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix.

Photographs made using an atomic force microscope and a scanning electron microscope show a multitude of very small particles, typically no bigger than a couple of microns in diameter. These particles are fully vulcanized rubber (typically EPDM rubber for most Santoprene TPV grades) in a thermoplastic phase (most often PP in the case of Santoprene TPV grades). Fully cross-linked or vulcanized means 98% or above, and because the morphology is "locked-in," it provides stable physical properties.

Properties

Designed for specific engineered applications, Santoprene TPV grades range from the hardness of 35 Shore A up to 50 Shore D.

Santoprene TPV grades offer the following:

Applications

Santoprene TPV grades are designed for a broad range of specific engineered applications.

Automotive components

Santoprene TPV (thermoplastic vulcanization) is used in weather seals, underhood and under-car applications, and interior components. In weather seals, TPV is used as a lightweight alternative to thermoset rubber materials in semi-dynamic and static parts, while in underhood and under-car applications it is well-suited for air ducts, tubing, molded seals, grommets, suspension bellows, cable jacketing, plugs, bumpers, and many other parts. This is due to its sealing performance and resistance to extreme temperatures, chemical exposure, and harsh environments.

Building and construction products

In commercial glazing seals, Santoprene TPV is used for curtain walls, storefronts, architectural windows, and skylight weather seal applications. It is also commonly used in residential glazing seals due to its low air and water infiltration ratings for the life of window and door systems.

For road and rail construction projects, Santoprene TPV is used for bridge and parking decks, water stops, rail pads, and other applications.

In plumbing, Santoprene TPV is used to create long-term seals, gaskets, and grommets that are resistant to flex fatigue, harsh temperatures, and chemicals. It can be used in a variety of sealing applications including pipe seals, bridge expansion joints and curtain walls, parts for potable water, and pipe seals for sewer and drainage.

Household appliance parts

Santoprene TPV is used in washing machines, dryers, dishwashers, refrigerators, small appliances, and floor care. Its properties enable it to be used in a range of parts including pump seals, hoses, couplings, vibration dampeners, drum rollers, knobs, and controls.

Electrical components

Santoprene TPV is used in wiring connectors to make watertight seals with electrical and thermal resistance, insulation for high voltage applications, and flexibility even at low temperatures to −60 °C.

It is used in industrial wire and cable connectors and low-voltage industrial cable applications that include insulation and jackets, in addition to consumer wire and cable use.

For electrical components, Santoprene TPV can be used for watertight seals, enabling connectors to be insert-molded to cable jacketing, producing a single integral part.

Processing

Santoprene TPV can be processed using conventional thermoplastic processes such as injection molding, blow molding, and extrusion. Manufacturing a part using Santoprene TPV, in contrast to rubber, is less complex. Santoprene TPV is ready to use and does not need to be compounded with different ingredients such as reinforcing fillers (carbon black, mineral fillers), stabilizers, plasticizing oils, and curing systems. [5] [6]

Compared to processing rubber, thermoplastic processing of Santoprene TPV can deliver shorter cycle times, a higher part output per hour, and the reuse of scrap produced during processing. This can result in part cost reduction, less tooling/machinery, lower scrap costs, and optimization of material logistic costs compared to rubber.

After a short drying period, TPV pellets are automatically transferred to the molding machine or extrusion line. Cycle times can be significantly faster because the parts do not have to cure in the mold, which is typically two to three minutes for rubber. The TPV part only has to cool, typically about 30 seconds, and then it can be removed from the mold or cooled in water.

Processing options

Injection molding: Santoprene TPV grades can be processed using conventional thermoplastics injection-molding equipment at reduced cycle times compared to thermoset rubber. TPV flexibility allows for greater freedom of mold design where undercuts are employed.

Insert molding: Insert molding consists of placing a preformed substrate into the mold and injecting TPV around or over it. If the insert and the TPV are compatible materials, a melt bond occurs at the interface between the two materials. The strength of this bond is affected by several factors, including interface temperature, cleanliness of the insert, and melt temperature of the TPV.

Two-shot injection molding: TPV can be combined with polymers through several types of multi-shot injection molding processes. By combining multiple materials, a wide variety of parts applications, such as a hard/soft combination, can be achieved. The process produces both a finished part and a substrate during each cycle. Two-shot molding is more efficient than insert molding because no handling of the substrate is required.

Blow molding: Santoprene TPV can be blow molded in a single layer, multi-layer, exchange blow, sequential 3D, suction blow, flashless extrusion blow, injection blow, and press-blow molding processes.

Extrusion: Santoprene TPV is easy to extrude into single and complex profiles. These materials can also be coextruded to yield a part with both rigid and soft components.

Thermoforming: The thermoforming properties of Santoprene TPV are similar to acrylonitrile butadiene styrene (ABS) and exhibit good melt strength, which provides uniform and predictable sag characteristics during heating. When producing a sheet for thermoformed parts, key attributes of Santoprene TPV are maintained, including colorability, impact resistance, weatherability, chemical resistance, non-skid, and matte surface in appearance and feel.

Recycling

Santoprene TPV can contribute to a reduction in overall waste in the manufacturing process as scrap produced during processing can be recycled. Material that has been recycled – even from old parts – exhibits properties almost as good as virgin material as an article in “Design News” magazine [7] reported on May 5, 2003.

According to the article:

Related Research Articles

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. Heat is not necessarily applied externally, but is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Elastomer</span> Polymer with rubber-like elastic properties

An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation is feasible without breaking of covalent bonds. At ambient temperatures, such rubbers are thus relatively compliant and deformable. Their primary uses are for seals, adhesives and molded flexible parts. Application areas for different types of rubber are manifold and cover segments as diverse as tires, soles for shoes, and damping and insulating elements.

<span class="mw-page-title-main">O-ring</span> Mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.

<span class="mw-page-title-main">EPDM rubber</span> Type of synthetic rubber

EPDM rubber is a type of synthetic rubber that is used in many applications. Dienes used in the manufacture of EPDM rubbers are ethylidene norbornene (ENB), dicyclopentadiene (DCPD), and vinyl norbornene (VNB). 4-8% of these monomers are typically used.

<span class="mw-page-title-main">Compression molding</span> Method of molding

Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.

<span class="mw-page-title-main">Blow molding</span> Manufacturing process for forming and joining together hollow plastic parts

Blow molding is a manufacturing process for forming hollow plastic parts. It is also used for forming glass bottles or other hollow shapes.

Spin casting, also known as centrifugal rubber mold casting (CRMC), is a method of utilizing inertia to produce castings from a rubber mold. Typically, a disc-shaped mold is spun along its central axis at a set speed. The casting material, usually molten metal or liquid thermoset plastic, is then poured in through an opening at the top-center of the mold. The filled mold then continues to spin as the metal solidifies.

<span class="mw-page-title-main">Silicone rubber</span> Elastomer

Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost.

Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers, are a class of copolymers or a physical mix of polymers that consist of materials with both thermoplastic and elastomeric properties. While most elastomers are thermosets, thermoplastics are in contrast relatively easy to use in manufacturing, for example, by injection moulding. Thermoplastic elastomers show advantages typical of both rubbery materials and plastic materials. The benefit of using thermoplastic elastomers is the ability to stretch to moderate elongations and return to its near original shape creating a longer life and better physical range than other materials. The principal difference between thermoset elastomers and thermoplastic elastomers is the type of cross-linking bond in their structures. In fact, crosslinking is a critical structural factor which imparts high elastic properties.

Thermoplastic olefin, thermoplastic polyolefin (TPO), or olefinic thermoplastic elastomers refer to polymer/filler blends usually consisting of some fraction of a thermoplastic, an elastomer or rubber, and usually a filler.

<span class="mw-page-title-main">Plastic extrusion</span> Melted plastic manufacturing process

Plastics extrusion is a high-volume manufacturing process in which raw plastic is melted and formed into a continuous profile. Extrusion produces items such as pipe/tubing, weatherstripping, fencing, deck railings, window frames, plastic films and sheeting, thermoplastic coatings, and wire insulation.

Fusible core injection molding, also known as lost core injection molding, is a specialized plastic injection molding process used to mold internal cavities or undercuts that are not possible to mold with demoldable cores. Strictly speaking the term "fusible core injection molding" refers to the use of a fusible alloy as the core material; when the core material is made from a soluble plastic the process is known as soluble core injection molding. This process is often used for automotive parts, such as intake manifolds and brake housings, however it is also used for aerospace parts, plumbing parts, bicycle wheels, and footwear.

Injection molding of liquid silicone rubber (LSR) is a process to produce pliable, durable parts in high volume.

Rubber Technology is the subject dealing with the transformation of rubbers or elastomers into useful products, such as automobile tires, rubber mats and, exercise rubber stretching bands. The materials includes latex, natural rubber, synthetic rubber and other polymeric materials, such as thermoplastic elastomers. Rubber processed through such methods are components of a wide range of items.

Membrane roofing is a type of roofing system for buildings, RV's, Ponds and in some cases tanks. It is used to create a watertight covering to protect the interior of a building. Membrane roofs are most commonly made from synthetic rubber, thermoplastic, or modified bitumen. Membrane roofs are most commonly used in commercial application, though they are becoming increasingly common in residential application.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

Plastic forming machines, or plastic molding machines, were developed on the basis of rubber machinery and metal die-casting machines. After the inception of the polymer injection molding process in the 1870s, plastic-forming machines were rapidly developed up until the 1930s. With the gradual commercialization of plastic molding equipment, injection molding and extrusion molding became the most common industrialized processes. Blow molding is the third-largest plastic molding method after the injection molding and extrusion blow molding methods.

<span class="mw-page-title-main">Acrylonitrile styrene acrylate</span> Chemical compound

Acrylonitrile styrene acrylate (ASA), also called acrylic styrene acrylonitrile, is an amorphous thermoplastic developed as an alternative to acrylonitrile butadiene styrene (ABS), but with improved weather resistance, and is widely used in the automotive industry. It is an acrylate rubber-modified styrene acrylonitrile copolymer. It is used for general prototyping in 3D printing, where its UV resistance and mechanical properties make it an excellent material for use in fused deposition modelling printers.

References

  1. "TESS -- Error". tmsearch.uspto.gov. Retrieved 2023-02-15.
  2. Elastron
  3. "TPV Suppliers". polymerdatabase.com. Retrieved 2023-02-15.
  4. 25th Anniversary article. EMC website. exxonmobilchemical.com
  5. Processing Santoprene TPV. Exxonmobilchemical.com. Retrieved on 2016-01-28.
  6. Santoprene TPV Injection molding. Exxonmobilchemical.com. Retrieved on 2016-01-28.
  7. Elastomeric Survivors- Design News Magazine. Designnews.com. Retrieved on 2016-01-28.