Thiele's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Thorvald Thiele in Danish in 1895, [1] and translated to English by Svante Janson in 2016. [2] They were used in Swedish parliamentary elections to distribute seats within parties, and are still used in city council elections.
In multiwinner approval voting, each voter can vote for one or more candidates, and the goal is to select a fixed number k of winners (where k may be, for example, the number of parliament members). The question is how to determine the set of winners?
Thiele wanted to keep the vote for individual candidates, so that voters can approve candidates based on their personal merits. However, Thiele's methods can handle more general situations, in which voters may vote for candidates from different parties (in fact, the method ignores the information on which candidate belongs to which party). [2] : Sec.1
We denote the number of voters by n, the number of candidates by m, and the required number of committee members k. With approval ballots, each voter i has an approval setAi, containing the subset of candidates that i approves. The goal is: given the sets Ai, select a subset W of winning candidates, such that |W|=k. This subset represents the elected committee.
Thiele's rules are based on the concept of satisfaction function. It is a function f that maps the number of committee-members approved by a voter, to a numeric amount representing the satisfaction of this voter from the committee. So if voter i approves a set of candidates Ai, and the set of elected candidates is W, then the voter's satisfaction is . The goal of Thiele's methods is to find a committee W that maximizes the total satisfaction (following the utilitarian rule). The results obviously depend on the function f. Without loss of generality, we can normalize f such that f(0)=0 and f(1)=1. Thiele claims that the selection of f should depend on the purpose of the elections: [2] : Sec.4
For each choice of f, Thiele suggested three methods.
Optimization methods: find the committee that maximizes the total satisfaction.
In general, solving the global optimization problem is an NP-hard computational problem, except when f(r)=r. Therefore, Thiele suggested two greedy approximation algorithms:
Addition methods: Candidates are elected one by one; at each round, the elected candidate is one that maximizes the increase in the total satisfaction. This is equivalent to weighted voting where each voter i, with ri approved winners so far, has a weight of f(ri+1)-f(ri).
Elimination methods work in the opposite direction to addition methods: starting with the set of all m candidates, candidates are removed one by one, until only k remain; at each round, the removed candidate is one that minimizes the decrease in the total satisfaction.
There is a ranked ballot version for Thiele's addition method. At each round, each voter i, with ri approved winners so far, has a voting weight of f(ri+1)-f(ri). Each voter's weight is counted only for his top remaining candidate. The candidate with the highest total weight is elected.
It was proposed in the Swedish parliament in 1912 and rejected; but was later adopted for elections inside city and county councils, and is still used for that purpose. [2] : Sec.10
For each possible ballot b, let vb be the number of voters who voted exactly b (for example: approved exactly the same set of candidates). Let pb be fraction of voters who voted exactly b (= vb / the total number of votes). A voting method is called homogeneous if it depends only on the fractions pb. So if the numbers of votes are all multiplied by the same constant, the method returns the same outcome. Thiele's methods are homogeneous in that sense. [2] : Rem.2.1
Thiele's addition method satisfies a property known as house monotonicity: when the number of committee members increases, all the previously elected members are still elected. This follows immediately from the method description. Thiele's elimination method is house-monotone too. But Thiele's optimization method generally violates house monotonicity, as noted by Thiele himself. In fact, Thiele's optimization method satisfies house-monotonicity only for the (normalized) satisfaction function f(r)=r. Here is an example: [2] : Sec.5.1
This also implies that Thiele's optimization method coincides with the addition method iff f(r)=r. [2] : Rem.5.2
Lackner and Skowron [6] show that Thiele's voting rules can be used to interpolate between regressive and degressive proportionality: PAV is proportional; rules in which the slope of the score function is above that of PAV satisfy regressive proportionality; and rules in which the slope of the score function is below that of PAV satisfy degressive proportionality. Moreover, If the satisfaction-score of the i-th approved candidate is (1/p)i, for various values of p, we get the entire spectrum between CC and AV. [7]
Approval voting is a single-winner electoral system in which voters mark all the candidates they support, instead of just choosing one. The candidate with the highest approval rating is elected. Approval voting is currently in use for government elections in St. Louis, Missouri and Fargo, North Dakota.
Score voting, sometimes called range voting, is an electoral system for single-seat elections. Voters give each candidate a numerical score, and the candidate with the highest average score is elected. Score voting includes the well-known approval voting, but also lets voters give partial (in-between) approval ratings to candidates.
In social choice, negative or perverse response is a pathological behavior of some voting rules, where increasing an option's ranking or rating causes them to lose. Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.
Proportionality for solid coalitions (PSC) is a criterion of proportionality for ranked voting systems. It is an adaptation of the quota rule to voting systems in which there are no official party lists, and voters can directly support candidates. The criterion was first proposed by the British philosopher and logician Michael Dummett.
Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It is a kind of highest median rule, a cardinal voting system that elects the candidate with the highest median rating.
Satisfaction approval voting (SAV), also known as equal and even cumulative voting, is an electoral system that is a form of multiwinner approval voting as well as a form of cumulative voting. In the academic literature, the rule was studied by Steven Brams and Marc Kilgour in 2010. In this system, voters may approve a number of candidates, and each approved candidate receives an equal fraction of the vote. For example, if a voter approves 4 candidates, then each candidate receives a 0.25 fractional vote. The election winners are those candidates that receive the highest fractional vote count.
Proportional approval voting (PAV) is a proportional electoral system for multiwinner elections. It is a multiwinner approval method that extends the highest averages method of apportionment commonly used to calculate apportionments for party-list proportional representation. However, PAV allows voters to support only the candidates they approve of, rather than being forced to approve or reject all candidates on a given party list.
Sequential proportional approval voting (SPAV) or reweighted approval voting (RAV) is an electoral system that extends the concept of approval voting to a multiple winner election. It is a simplified version of proportional approval voting. It is a special case of Thiele's voting rules, proposed by Danish statistician Thorvald N. Thiele in the early 1900s. It was used in Sweden from 1909 to 1921, when it was replaced by a cruder "party-list" style system as it was easier to calculate, and is still used for some local elections.
STAR voting is an electoral system for single-seat elections. The name stands for "Score then Automatic Runoff", referring to the fact that this system is a combination of score voting, to pick two finalists with the highest total scores, followed by an "automatic runoff" in which the finalist who is preferred on more ballots wins. It is a type of cardinal voting electoral system.
Combinatorial participatory budgeting, also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.
Justified representation (JR) is a criterion of fairness in multiwinner approval voting. It can be seen as an adaptation of the proportional representation criterion to approval voting.
Multiwinner approval voting, sometimes also called approval-based committee (ABC) voting, refers to a family of multi-winner electoral systems that use approval ballots. Each voter may select ("approve") any number of candidates, and multiple candidates are elected.
Multiwinner, at-large, or committeevoting refers to electoral systems that elect several candidates at once. Such methods can be used to elect parliaments or committees.
House monotonicity is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states. The property says that, if the number of seats in the "house" increases, and the method is re-activated, then no state should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.
In fractional social choice, fractional approval voting refers to a class of electoral systems using approval ballots, in which the outcome is fractional: for each alternative j there is a fraction pj between 0 and 1, such that the sum of pj is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins and the other candidates lose. The fractions pj can be interpreted in various ways, depending on the setting. Examples are:
Phragmén's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Lars Edvard Phragmén in French and Swedish between 1893 and 1899, and translated to English by Svante Janson in 2016.
The method of equal shares is a proportional method of counting ballots that applies to participatory budgeting, to committee elections, and to simultaneous public decisions. It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power".
Multi-issue voting is a setting in which several issues have to be decided by voting. Multi-issue voting raises several considerations, that are not relevant in single-issue voting.
The expanding approvals rule (EAR) is a rule for multi-winner elections that guarantees a form of proportional representation called proportionality for solid coalitions. It is a generalization of the highest median rules to include multiwinner elections and participatory budgeting. When working with ranked ballots, it is sometimes called the Bucklin transferable vote. However, the rule can be more effectively implemented using rated ballots, which are easier to use and provide additional cardinal utility information that can be used for better decision-making.
Fully proportional representation(FPR) is a property of multiwinner voting systems. It extends the property of proportional representation (PR) by requiring that the representation be based on the entire preferences of the voters, rather than on their first choice. Moreover, the requirement combines PR with the requirement of accountability - each voter knows exactly which elected candidate represents him, and each candidate knows exactly which voters he represents.