Thiomicrospira aerophila | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | T. aerophila |
Binomial name | |
Thiomicrospira aerophila Boden et al. 2017 (Sorokin et al. 2001) [1] | |
Thiomicrospira aerophila (basonynm: Thioalkalimicrobium aerophilum) is an obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacterium that was previously the type species of Thioalkalimicrobium prior to reclassification in 2017. [1] It was first isolated from soda lakes in northern Russia. [2]
The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:
Thiobacillus is a genus of Gram-negative Betaproteobacteria. Thiobacillus thioparus is the type species of the genus, and the type strain thereof is the StarkeyT strain, isolated by Robert Starkey in the 1930s from a field at Rutgers University in the United States of America. While over 30 "species" have been named in this genus since it was defined by Martinus Beijerinck in 1904,, most names were never validly or effectively published. The remainder were either reclassified into Paracoccus, Starkeya ; Sulfuriferula, Annwoodia, Thiomonas ; Halothiobacillus, Guyparkeria, or Thermithiobacillus or Acidithiobacillus. The very loosely defined "species" Thiobacillus trautweinii was where sulfur oxidising heterotrophs and chemolithoheterotrophs were assigned in the 1910-1960s era, most of which were probably Pseudomonas species. Many species named in this genus were never deposited in service collections and have been lost.
Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.
Campylobacterota are a phylum of bacteria. All species of this phylum are Gram-negative.
Hydrogenovibrio crunogenus is a colorless, sulfur-oxidizing bacterium first isolated from a deep-sea hydrothermal vent. It is an obligate chemolithoautotrophic sulfur oxidizer and differs from other species of this genus by its DNA base composition and by its growth rate and optimal pH in thiosulfate medium. ATCC 35932T is the type strain of the species. It was originally published in the genus Thiomicrospira as Thiomicrospira crunogena but was reclassified to the genus Hydrogenovibrio in 2017, resulting a grammatical gender change of the specific epithet from crunogena to crunogenus. The genome sequence of H. crunogenus XCL-2 has been published but that of the type strain has not yet been undertaken.
Sulfurimonas paralvinellae is a hydrogen- and sulfur-oxidizing bacterium. It is a mesophilic chemolithoautotroph.
Thiomicrospira siberica is a species of obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes in northern Russia, hence the specific epithet. In 2017, all 4 species of the genus Thioalkalimicrobium were reclassified to Thiomicrospira.
Thioalkalivibrio versutus is an obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes in northern Russia.
Thioalkalivibrio nitratis is an obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes in northern Russia.
Thioalkalivibrio denitrificancs is an obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes in northern Russia.
Thioalkalivibrio thiocyanoxidans is a species of alkaliphilic and obligately autotrophic sulfur-oxidizing bacterium. It was first isolated from soda lakes. Its type strain is Arh 2.
Thioalkalivibrio paradoxus is an alkaliphilic and obligately autotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes. Its type strain is ARh 1.
Thioalkalivibrio is a Gram-negative, mostly halophilic bacterial genus of the family Ectothiorhodospiraceae.
Thioalkalimicrobium is a defunct bacterial genus within the Gammaproteobacteria. All 4 species in the genus were reclassified to the genus Thiomicrospira in 2017.
The Thioalkalibacteraceae are a family of extremophiles, namely halophilic, alkaliphilic or alkalitolerant, mesophilic to thermophilic obligately chemolithoautotrophic organisms in the Chromatiales comprising the genus Thioalkalibacter and Guyparkeria. The family is closely related to the family Halothiobacillaceae of halotolerant, mesophilic obligate autotrophs.
Thiohalomonas denitrificans is a moderately halophilic, obligately chemolithoautotrophic and sulfur-oxidizing bacterium from the genus of Thiohalomonas which has been isolated from sediments of hypersaline lakes from Siberia in Russia.
Thiogranum is an obligately chemolithoautotrophic genus of bacteria from the family of Ectothiorhodospiraceae with one known species. Thiogranum longum has been isolated from a rock from a deep-sea hydrothermal field from the coast of Suiyo Seamount in Japan.
Thiohalospira halophila is a halophilic, obligately chemolithoautotrophic and sulfur-oxidizing bacterium from the genus of Thiohalospira which has been isolated from a hypersaline lake from Siberia.
Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.
Alkalihalobacillus is a genus of gram-positive or gram-variable rod-shaped bacteria in the family Bacillaceae from the order Bacillales. The type species of this genus is Alkalihalobacillus alcalophilus.