Thread control block

Last updated

Thread Control Block (TCB) is a data structure in an operating system kernel that contains thread-specific information needed to manage the thread. [1] The TCB is "the manifestation of a thread in an operating system."

Each thread has a thread control block. An operating system keeps track of the thread control blocks in kernel memory. [2]

An example of information contained within a TCB is:

The Thread Control Block acts as a library of information about the threads in a system. Specific information is stored in the thread control block highlighting important information about each process.

See also

Related Research Articles

In computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multiprogramming or multitasking operating system. In a traditional CPU, each process - a program in execution - utilizes the various CPU registers to store data and hold the current state of the running process. However, in a multitasking operating system, the operating system switches between processes or threads to allow the execution of multiple processes simultaneously. For every switch, the operating system must save the state of the currently running process, followed by loading the next process state, which will run on the CPU. This sequence of operations that stores the state of the running process and the loading of the following running process is called a context switch.

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

In computer science, threaded code is a programming technique where the code has a form that essentially consists entirely of calls to subroutines. It is often used in compilers, which may generate code in that form or be implemented in that form themselves. The code may be processed by an interpreter or it may simply be a sequence of machine code call instructions.

<span class="mw-page-title-main">Memory management</span> Computer memory management methodology

Memory management is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway at any time.

<span class="mw-page-title-main">System call</span> Way for programs to access kernel services

In computing, a system call is the programmatic way in which a computer program requests a service from the operating system on which it is executed. This may include hardware-related services, creation and execution of new processes, and communication with integral kernel services such as process scheduling. System calls provide an essential interface between a process and the operating system.

C dynamic memory allocation refers to performing manual memory management for dynamic memory allocation in the C programming language via a group of functions in the C standard library, namely malloc, realloc, calloc, aligned_alloc and free.

Light Weight Kernel Threads (LWKT) is a computer science term and from DragonFly BSD in particular. LWKTs differ from normal kernel threads in that they can preempt normal kernel threads. According to Matt Dillon, DragonFlyBSD creator:

The LWKT scheduler is responsible for actually running a thread. It uses a fixed priority scheme, but the fixed priorities are differentiating major subsystems, not user processes. For example, hardware interrupt threads have the highest priority, followed by software interrupts, kernel-only threads, then finally user threads. A user thread either runs at user-kernel priority, or a user thread runs at user priority.

DragonFly does preempt, it just does it very carefully and only under particular circumstances. An LWKT interrupt thread can preempt most other threads, for example. This mimics what FreeBSD-4.x already did with its spl/run-interrupt-in-context-of-current-process mechanism. What DragonFly does *NOT* do is allow a non-interrupt kernel thread to preempt another non-interrupt kernel thread.

The mainframe z/OS Operating system supports a similar mechanism, called SRB.

SRB's represent requests to execute a system service routine. SRB's are typically created when one address space detects an event that affects a different address space; they provide one of several mechanisms for asynchronous inter-address space communication for programs running on z/OS.

An SRB is similar to a Process Control Block (PCB), in that it identifies a unit of work to the system. Unlike a PCB, an SRB cannot "own" storage areas. In a multiprocessor environment, the SRB routine, after being scheduled, can be dispatched on another processor and can run concurrently with the scheduling program. The scheduling program can continue to do other processing in parallel with the SRB routine. Only programs running in kernel mode can create an SRB.

The Windows Operating System knows a similar light weight thread mechanism named "fibers". Fibers are scheduled by an application program. The port of the CICS Transaction Server to the Windows platform uses fibers, somewhat analogous to the use of "enclaves" under z/OS.

In UNIX, "kernel threads" have two threads, one is the core thread, one is the user thread.

In computer systems programming, an interrupt handler, also known as an interrupt service routine or ISR, is a special block of code associated with a specific interrupt condition. Interrupt handlers are initiated by hardware interrupts, software interrupt instructions, or software exceptions, and are used for implementing device drivers or transitions between protected modes of operation, such as system calls.

A process control block (PCB), also sometimes called a process descriptor, is a data structure used by computer operating systems to store all the information about a process.

Micro-Controller Operating Systems is a real-time operating system (RTOS) designed by Jean J. Labrosse in 1991. It is a priority-based preemptive real-time kernel for microprocessors, written mostly in the programming language C. It is intended for use in embedded systems.

TCB may refer to:

In computing, the Win32 Thread Information Block (TIB) is a data structure in Win32 on x86 that stores information about the currently running thread. It is also known as the Thread Environment Block (TEB) for Win32. It descended from, and is backward-compatible on 32-bit systems with, a similar structure in OS/2.

In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks.

The Task Control Block (TCB) contains the state of a task in, e.g., OS/360 and successors on IBM System/360 architecture and successors.

ntoskrnl.exe, also known as the kernel image, contains the kernel and executive layers of the Microsoft Windows NT kernel, and is responsible for hardware abstraction, process handling, and memory management. In addition to the kernel and executive mentioned earlier, it contains the cache manager, security reference monitor, memory manager, scheduler (Dispatcher), and blue screen of death.

The task state segment (TSS) is a structure on x86-based computers which holds information about a task. It is used by the operating system kernel for task management. Specifically, the following information is stored in the TSS:

<span class="mw-page-title-main">Process management (computing)</span> Computer system for maintaining order among running programs

A process is a program in execution, and an integral part of any modern-day operating system (OS). The OS must allocate resources to processes, enable processes to share and exchange information, protect the resources of each process from other processes and enable synchronization among processes. To meet these requirements, the OS must maintain a data structure for each process, which describes the state and resource ownership of that process, and which enables the OS to exert control over each process.

Verve is a research operating system developed by Microsoft Research. Verve is verified end-to-end for type safety and memory safety.

The Bellmac 32 is a microprocessor developed by Bell Labs' processor division in 1980, implemented using CMOS technology and was the first microprocessor that could move 32 bits in one clock cycle. The microprocessor contains 150,000 transistors and improved on the speed of CMOS design by using "domino circuits". It was designed with the C programming language in mind. After its creation, an improved version was produced called the Bellmac 32A, then cancelled along with its successor, the "Hobbit" C-language Reduced Instruction Set Processor (CRISP).

References

  1. "Thread Control Block in Operating System". GeeksforGeeks. 2019-11-26. Retrieved 2023-09-04.
  2. "CS162 - Fall 2014 #7 - Kernel Threads". inst.eecs.berkeley.edu. Retrieved 2023-12-07.