Through and through

Last updated

Through and through describes a situation where an object, real or imaginary, passes completely through another object, also real or imaginary. The phrase has several common uses:

Contents

Forensics

Through and through is used in forensics to describe a bullet that has passed through a body, leaving both entry and exit wounds Example..

Printmaking

An image may be through and through in the following cases:

Through and through images are more durable; they do not easily wear off.

In the case that the image can be viewed from the other side, we see the mirror image, just like in the case of a transparent image, such as a drawing on a transparent sheet.

A sheet with a through and through image is achiral. We can distinguish two cases:

See also


Related Research Articles

Precession periodic change in direction of an axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

Sphere round geometrical and circular object in three-dimensional space; special case of spheroid

A sphere is a geometrical object in three-dimensional space that is the surface of a ball.

2D computer graphics graphics that use a two-dimensional representation of geometric data

2D computer graphics is the computer-based generation of digital images—mostly from two-dimensional models and by techniques specific to them. The word may stand for the branch of computer science that comprises such techniques or for the models themselves.

Rotation Movement of an object around an axis

A rotation is a circular movement of an object around a center of rotation. A three-dimensional object can always be rotated about an infinite number of imaginary lines called rotation axes. If the axis passes through the body's center of mass, the body is said to rotate upon itself, or spin. A rotation around an external point, e.g. the planet Earth around the Sun, is called a revolution or orbital revolution, typically when it is produced by gravity. The axis is called a pole.

An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

Hyperboloid Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

Vortex term in fluid dynamics

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

Shape form of an object or its external boundary

A shape is the form of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture or material type.

Complex plane Geometric representation of the complex numbers

In mathematics, the complex plane or z-plane is a geometric representation of the complex numbers established by the real axis and the perpendicular imaginary axis. It can be thought of as a modified Cartesian plane, with the real part of a complex number represented by a displacement along the x-axis, and the imaginary part by a displacement along the y-axis.

Wallpaper group 2D symmetry group

A wallpaper group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles and tiles as well as wallpaper.

Rigid body idealization of a solid body in which deformation is neglected (distance between any two given points of a rigid body remains constant in time regardless of external forces exerted on it)

In physics, a rigid body is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces exerted on it. A rigid body is usually considered as a continuous distribution of mass.

Kerr metric Rotating solution of Einsteins equations, featuring axisymmetric ergosphere and event horizon around a singularity

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially-symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

Lathe (graphics) 3D model

In 3D computer graphics, a lathed object is a 3D model whose vertex geometry is produced by rotating the points of a spline or other point set around a fixed axis. The lathing may be partial; the amount of rotation is not necessarily a full 360 degrees. The point set providing the initial source data can be thought of as a cross section through the object along a plane containing its axis of radial symmetry.

Rotational symmetry Symmetry (something looking the same) under rotation

Rotational symmetry, also known as radial symmetry in biology, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

Translational symmetry invariance with respect to addition of a constant vector to a coordinate system

In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by a: Ta(p) = p + a.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the focal points, the principal points, and the nodal points. For ideal systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact only four points are necessary: the focal points and either the principal or nodal points. The only ideal system that has been achieved in practice is the plane mirror, however the cardinal points are widely used to approximate the behavior of real optical systems. Cardinal points provide a way to analytically simplify a system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations.

<i>Octacube</i> (sculpture)

The Octacube is a large, stainless steel sculpture displayed in the mathematics department of Pennsylvania State University in State College, PA. The sculpture represents a mathematical object called the 24-cell or "octacube". Because a real 24-cell is four-dimensional, the artwork is actually a projection into the three-dimensional world.

Multiview projection

In technical drawing and computer graphics, a multiview projection is a technique of illustration by which a standardized series of orthographic two-dimensional pictures are constructed to represent the form of a three-dimensional object. Up to six pictures of an object are produced, with each projection plane parallel to one of the coordinate axes of the object. The views are positioned relative to each other according to either of two schemes: first-angle or third-angle projection. In each, the appearances of views may be thought of as being projected onto planes that form a six-sided box around the object. Although six different sides can be drawn, usually three views of a drawing give enough information to make a three-dimensional object. These views are known as front view, top view and end view. Other names for these views include plan, elevation and section.

In astronomy, geography, and related sciences and contexts, a direction or plane passing by a given point is said to be vertical if it contains the local gravity direction at that point. Conversely, a direction or plane is said to be horizontal if it is perpendicular to the vertical direction. In general, something that is vertical can be drawn from up to down, such as the y-axis in the Cartesian coordinate system.