Time Stamp Counter

Last updated
A Linux boot log showing the usage of TSC as system clocksource Clocksource on Linux booting screenshot.png
A Linux boot log showing the usage of TSC as system clocksource

The Time Stamp Counter (TSC) is a 64-bit register present on all x86 processors since the Pentium. It counts the number of CPU cycles since its reset. The instruction RDTSC returns the TSC in EDX:EAX. In x86-64 mode, RDTSC also clears the upper 32 bits of RAX and RDX. Its opcode is 0F 31. [1] Pentium competitors such as the Cyrix 6x86 did not always have a TSC and may consider RDTSC an illegal instruction. Cyrix included a Time Stamp Counter in their MII.



The Time Stamp Counter was once an excellent high-resolution, low-overhead way for a program to get CPU timing information. With the advent of multi-core/hyper-threaded CPUs, systems with multiple CPUs, and hibernating operating systems, the TSC cannot be relied upon to provide accurate results — unless great care is taken to correct the possible flaws: rate of tick and whether all cores (processors) have identical values in their time-keeping registers. There is no promise that the timestamp counters of multiple CPUs on a single motherboard will be synchronized. Therefore, a program can get reliable results only by limiting itself to run on one specific CPU. Even then, the CPU speed may change because of power-saving measures taken by the OS or BIOS, or the system may be hibernated and later resumed, resetting the TSC. In those latter cases, to stay relevant, the program must re-calibrate the counter periodically.

Relying on the TSC also reduces portability, as other processors may not have a similar feature. Recent Intel processors include a constant rate TSC (identified by the kern.timecounter.invariant_tsc sysctl on FreeBSD or by the "constant_tsc" flag in Linux's /proc/cpuinfo). With these processors, the TSC ticks at the processor's nominal frequency, regardless of the actual CPU clock frequency due to turbo or power saving states. Hence TSC ticks are counting the passage of time, not the number of CPU clock cycles elapsed.

On Windows platforms, Microsoft strongly discourages using the TSC for high-resolution timing for exactly these reasons, providing instead the Windows APIs QueryPerformanceCounter and QueryPerformanceFrequency (which itself uses RDTSCP if the system has an invariant TSC, i.e. the frequency of the TSC doesn't vary according to the current core's frequency). [2] On Linux systems, a program can get similar function by reading the value of CLOCK_MONOTONIC_RAW clock using the clock_gettime function. [3]

Starting with the Pentium Pro, Intel processors have practiced out-of-order execution, where instructions are not necessarily performed in the order they appear in the program. This can cause the processor to execute RDTSC earlier than a simple program expects, producing a misleading cycle count. [4] The programmer can solve this problem by inserting a serializing instruction, such as CPUID, to force every preceding instruction to complete before allowing the program to continue. The RDTSCP instruction is a variant of RDTSC that features partial serialization of the instruction stream, but should not be considered as serializing.

Implementation in various processors

Intel processor families increment the time-stamp counter differently: [5]

The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration of each clock tick is uniform and makes it possible to use the TSC as a wall-clock timer even if the processor core changes frequency. This is the architectural behavior for all later Intel processors.

AMD processors up to the K8 core always incremented the time-stamp counter every clock cycle. [6] Thus, power management features were able to change the number of increments per second, and the values could get out of sync between different cores or processors in the same system. For Windows, AMD provides a utility [7] to periodically synchronize the counters on multiple core CPUs. Since the family 10h (Barcelona/Phenom), AMD chips feature a constant TSC, which can be driven either by the HyperTransport speed or the highest P state. A CPUID bit (Fn8000_0007:EDX_8) advertises this; Intel-CPUs also report their invariant TSC on that bit.

Operating system use

An operating system may provide methods that both use and don't use the RDTSC instruction for time keeping, under administrator control. For example, on some versions of the Linux kernel, seccomp sandboxing mode disables RDTSC. [8] It can also be disabled using the PR_SET_TSC argument to the prctl() system call. [9]

Use in exploiting cache side-channel attacks

The time stamp counter can be used to time instructions accurately which can be exploited in the Meltdown and Spectre security vulnerabilities. [10] [11] However if this is not available other counters or timers can be used, as is the case with the ARM processors vulnerable to this type of attack.

Other architectures

Other processors also have registers which count CPU clock cycles, but with different names. For instance, on the AVR32, it is called the Performance Clock Counter (PCCNT) register. SPARC V9 provides the TICK register. PowerPC provides the 64-bit TBR register.

ARMv7 [12] and ARMv8-A [13] architectures provide a generic counter which counts at a constant frequency. ARMv7 provides the Cycle Counter Register (CCNT instruction) to read and write the counter, but the instruction is privileged. [14]

See also

Related Research Articles

i486 Successor to the Intel 386

The Intel 486, officially named i486 and also known as 80486, is a microprocessor. It is a higher-performance follow-up to the Intel 386. The i486 was introduced in 1989. It represents the fourth generation of binary compatible CPUs following the 8086 of 1978, the Intel 80286 of 1982, and 1985's i386.

<span class="mw-page-title-main">Pentium (original)</span> Intel microprocessor

The Pentium is a fifth generation, 32-bit x86 microprocessor that was introduced by Intel on March 22, 1993, as the very first CPU in the Pentium brand. It was instruction set compatible with the 80486 but was a new and very different microarchitecture design from previous iterations. The P5 Pentium was the first superscalar x86 microarchitecture and the world's first superscalar microprocessor to be in mass production—meaning it generally executes at least 2 instructions per clock mainly because of a design-first dual integer pipeline design previously thought impossible to implement on a CISC microarchitecture. Additional features include a faster floating-point unit, wider data bus, separate code and data caches, and many other techniques and features to enhance performance and support security, encryption, and multiprocessing, for workstations and servers when compared to the next best previous industry standard processor implementation before it, the Intel 80486.

In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of Central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions, most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing.

<span class="mw-page-title-main">Pentium 4</span> Brand by Intel

Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. The production of Netburst processors was active from 2000 until May 21, 2010.

x86-64 Type of instruction set which is a 64-bit version of the x86 instruction set

x86-64 is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.

SSE2 is one of the Intel SIMD processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2000. It extends the earlier SSE instruction set, and is intended to fully replace MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003.

The x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a computer file and executed on the processor.

The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2004, Intel released the Foster core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture.

The NX bit (no-execute) is a technology used in CPUs to segregate areas of memory for use by either storage of processor instructions or for storage of data, a feature normally only found in Harvard architecture processors. However, the NX bit is being increasingly used in conventional von Neumann architecture processors for security reasons.

<span class="mw-page-title-main">Pentium D</span>

Pentium D is a range of desktop 64-bit x86-64 processors based on the NetBurst microarchitecture, which is the dual-core variant of the Pentium 4 manufactured by Intel. Each CPU comprised two dies, each containing a single core, residing next to each other on a multi-chip module package. The brand's first processor, codenamed Smithfield and manufactured on the 90 nm process, was released on May 25, 2005, followed by the 65 nm Presler nine months later.

Enhanced SpeedStep is a series of dynamic frequency scaling technologies built into some Intel microprocessors that allow the clock speed of the processor to be dynamically changed by software. This allows the processor to meet the instantaneous performance needs of the operation being performed, while minimizing power draw and heat generation. EIST was introduced in several Prescott 6 series in the first quarter of 2005, namely the Pentium 4 660. Intel Speed Shift Technology (SST) was introduced in Intel Skylake Processor.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.

The High Precision Event Timer (HPET) is a hardware timer available in modern x86-compatible personal computers. Compared to older types of timers available in the x86 architecture, HPET allows more efficient processing of highly timing-sensitive applications, such as multimedia playback and OS task switching. It was developed jointly by Intel and Microsoft and has been incorporated in PC chipsets since 2005. Formerly referred to by Intel as a Multimedia Timer, the term HPET was selected to avoid confusion with the software multimedia timers introduced in the MultiMedia Extensions to Windows 3.0.

In computing, Intel's Advanced Programmable Interrupt Controller (APIC) is a family of interrupt controllers. As its name suggests, the APIC is more advanced than Intel's 8259 Programmable Interrupt Controller (PIC), particularly enabling the construction of multiprocessor systems. It is one of several architectural designs intended to solve interrupt routing efficiency issues in multiprocessor computer systems.

Yonah was the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias / Dothan Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

<span class="mw-page-title-main">History of general-purpose CPUs</span> History of processors used in general purpose computers

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

In computing, PSE-36 refers to a feature of x86 processors that extends the physical memory addressing capabilities from 32 bits to 36 bits, allowing addressing to up to 64 GB of memory. Compared to the Physical Address Extension (PAE) method, PSE-36 is a simpler alternative to addressing more than 4 GB of memory. It uses the Page Size Extension (PSE) mode and a modified page directory table to map 4 MB pages into a 64 GB physical address space. PSE-36's downside is that, unlike PAE, it doesn't have 4-KB page granularity above the 4 GB mark.

Advanced Vector Extensions (AVX) are extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later by AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features, new instructions and a new coding scheme.

An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using Advanced Encryption Standard (AES).


  1. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2B: Instruction Set Reference, M-Z (PDF). p. 545.
  2. Game Timing and Multicore Processors. pp. 251–252.
  3. "clock_getres, clock_gettime, clock_settime - clock and timer functions".
  4. "Using the RDTSC Instruction for Performance Monitoring" (PDF).
  5. "Volume 3A, Chapter 16". Intel 64 and IA-32 Architectures Software Developer's Manual.
  6. "Volume 3". AMD64 Architecture Programmer's Manual.
  7. "AMD Dual-Core Optimizer".
  8. "cr0 blog: Time-stamp counter disabling oddities in the Linux kernel". May 2009.
  9. prctl(2)    Linux Programmer's Manual – System Calls
  10. "meltdown.c".
  11. "spectre.c".
  12. "ARMv7 reference manual".
  13. "ARMv8 reference manual".
  14. "Cycle Counter Register (CCNT)". ARM Ltd. Retrieved March 5, 2021.