Tinkerforge

Last updated
Tinkerforge GmbH
Type GmbH
Founded2011
FounderOlaf Lüke, Bastian Nordmeyer
Headquarters Stukenbrock, Germany
Products Microcontroller
Website www.tinkerforge.com

Tinkerforge is an open source hardware platform of stackable microcontroller building blocks (Bricks) that can control different modules (Bricklets). The primary communication interface of the building blocks can be extended using Master Extensions. The hardware can be controlled by external programs written in C, C++, C#, Object Pascal, Java, Perl, PHP, Python, Ruby, Shell and VB.NET over a USB, Wifi or Ethernet connection, and running on Windows, Linux and macOS. This non-embedded programming approach eliminates the typical requirements and limitations (development tools, limited availability of RAM and processing power) of conventional embedded software development (such as Arduino). Tinkerforge hardware and software are both Open Source, and all files are hosted on GitHub.

Contents

The computer magazine Chip awarded Tinkerforge 2012 the "Product of the Year" award. [1]

Bricks

Master Brick with WIFI Extension Master Brick with WIFI Extension.jpg
Master Brick with WIFI Extension

Bricks are 4x4 cm circuit boards. They can evaluate measurements, control motors and communicate with other building blocks. Each Brick has a 32-Bit ARM microcontroller, a USB connector and connectors for more Bricks and Bricklets.

It is possible to stack several Bricks onto each other. The bottom Brick of such Stacks needs to be a Master Brick.

Bricklets

Bricklets extend the features of Bricks. They provide means for in- and output of data. Many Bricklets are sensors, but there are also LCD-Bricklets and Bricklets for digital and analog in- and output.

Master Extensions

Master Extensions extend the communication interfaces of Bricks. Like Bricks, Master Extensions are 4x4cm circuit boards. There are Extensions for Wi-Fi, Ethernet and RS-485. From a programming perspective the different interfaces are transparent. A stack with Master Extension behaves as if every board in the stack would be directly connected to the PC over a USB connection.

See also

Related Research Articles

<span class="mw-page-title-main">Microcontroller</span> Small computer on a single integrated circuit

A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.

<span class="mw-page-title-main">AVR microcontrollers</span> Family of microcontrollers

AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

<span class="mw-page-title-main">PIC microcontrollers</span> Line of single-chip microprocessors from Microchip Technology

PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1650 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.

<span class="mw-page-title-main">Single-board computer</span> Computer whose components are on a single printed circuit board

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer. Single-board computers are commonly made as demonstration or development systems, for educational systems, or for use as embedded computer controllers. Many types of home computers or portable computers integrate all their functions onto a single printed circuit board.

In-circuit emulation (ICE) is the use of a hardware device or in-circuit emulator used to debug the software of an embedded system. It operates by using a processor with the additional ability to support debugging operations, as well as to carry out the main function of the system. Particularly for older systems, with limited processors, this usually involved replacing the processor temporarily with a hardware emulator: a more powerful although more expensive version. It was historically in the form of bond-out processor which has many internal signals brought out for the purpose of debugging. These signals provide information about the state of the processor.

JTAG is an industry standard for verifying designs and testing printed circuit boards after manufacture.

<span class="mw-page-title-main">Embedded software</span> Computer software written to control machines not typically thought of as computers

Embedded software is computer software, written to control machines or devices that are not typically thought of as computers, commonly known as embedded systems. It is typically specialized for the particular hardware that it runs on and has time and memory constraints. This term is sometimes used interchangeably with firmware.

A general-purpose input/output (GPIO) is an uncommitted digital signal pin on an integrated circuit or electronic circuit board which may be used as an input or output, or both, and is controllable by software.

<span class="mw-page-title-main">Arduino</span> Open-source hardware and software platform

Arduino is an Italian open-source hardware and software company, project, and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Its hardware products are licensed under a CC BY-SA license, while the software is licensed under the GNU Lesser General Public License (LGPL) or the GNU General Public License (GPL), permitting the manufacture of Arduino boards and software distribution by anyone. Arduino boards are available commercially from the official website or through authorized distributors.

AT91CAP is a family of Atmel microcontrollers based on the 32-bit RISC microprocessors from ARM. They include a block of metal-programmable logic gates that can be personalized by the application developer. The MP Block can contain one or more additional processor cores, additional peripherals or interfaces, or application-specific logic such as a GPS correlator.

<span class="mw-page-title-main">Single-board microcontroller</span>

A single-board microcontroller is a microcontroller built onto a single printed circuit board. This board provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs. The intention is that the board is immediately useful to an application developer, without requiring them to spend time and effort to develop controller hardware.

Ethernut is an open source hardware and software project for use as an embedded-Ethernet-system.

<span class="mw-page-title-main">STM32</span> ARM Cortex-M based Microcontrollers by STMicroelectronics

STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32 chips are grouped into related series that are based around the same 32-bit ARM processor core: Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M33. Internally, each microcontroller consists of ARM processor core(s), flash memory, static RAM, debugging interface, and various peripherals.

XMC is a family of microcontroller ICs by Infineon. The XMC microcontrollers use the 32-bit RISC ARM processor cores from ARM Holdings, such as Cortex-M4F and Cortex-M0. XMC stands for "cross-market microcontrollers", meaning that this family can cover due to compatibility and configuration options, a wide range in industrial applications. The family supports three essential trends in the industry: It increases the energy efficiency of the systems, supports a variety of communication standards and reduces software complexity in the development of the application's software environment with the parallel released eclipse-based software tool DAVE.

<span class="mw-page-title-main">Arduino Uno</span> Microcontroller board

The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released in 2010. The microcontroller board is equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (shields) and other circuits. The board has 14 digital I/O pins, 6 analog I/O pins, and is programmable with the Arduino IDE, via a type B USB cable. It can be powered by a USB cable or a barrel connector that accepts voltages between 7 and 20 volts, such as a rectangular 9-volt battery. It has the same microcontroller as the Arduino Nano board, and the same headers as the Leonardo board. The hardware reference design is distributed under a Creative Commons Attribution Share-Alike 2.5 license and is available on the Arduino website. Layout and production files for some versions of the hardware are also available.

The MSP432 is a mixed-signal microcontroller family from Texas Instruments. It is based on a 32-bit ARM Cortex-M4F CPU, and extends their 16-bit MSP430 line, with a larger address space for code and data, and faster integer and floating point calculation than the MSP430. Like the MSP430, it has a number of built-in peripheral devices, and is designed for low power requirements. In 2021, TI confirmed that the MSP432 has been discontinued and "there will be no new MSP432 products".

References

  1. These are the winners of the CHIP AWARDS 2012