TisB-IstR toxin-antitoxin system

Last updated
IstR
IstR SScons.png
Conserved secondary structure of IstR sRNA.
Identifiers
SymbolIstR
Rfam RF01400
Other data
RNA typesRNA
Domain(s) Enterobacteriaceae
PDB structures PDBe
TisB Type I toxin-antitoxin system
Identifiers
SymbolTisB_toxin
Pfam PF13939
Membranome 394
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The TisB-IstR toxin-antitoxin system is the first known toxin-antitoxin system which is induced by the SOS response in response to DNA damage. [1]

Contents

IstR-1 and IstR-2

IstR sRNA (inhibitor of SOS-induced toxicity by RNA) is a family of non-coding RNA first identified in Escherichia coli . There are two small RNAs encoded by the IstR locus: IstR-1 and IstR-2, of which IstR-1 works as antitoxins against the toxic protein TisB (toxicity-induced by SOS B) which is encoded by the neighbouring tisAB gene. [2] IstR-1 is a 75 nucleotide transcript expressed constitutively throughout growth, whereas IstR-2 is a 140 nucleotide transcript induced by Mitomycin C (MMC). Both IstR-2 and tisAB are thought to be regulated by LexA while IstR-1 is constitutively transcribed. [1]

Deletion analysis confirmed the function of IstR, E. coli strain K-12 could not grow in the absence of IstR when tisAB was present. Inserting IstR genes on a plasmid allowed the bacteria to grow normally. Further studies showed that expression of IstR-1 alone is enough to remedy the toxic effects of TisB. [1] IstR-2 is not involved in the regulation of tisAB. [2]

TisAB

The tisAB locus codes for two genes: tisA and tisB. The tisA reading frame was shown through a translation assay to not be translated. [2] Its sequence is unconserved across species. TisB is a 29 amino acid peptide widely conserved in enterobacteria. TisB is responsible for conferring toxicity through suspected membrane disruption. [1] [2] Upon translation of the tisB gene, a +1 inactive primary transcript mRNA is produced, which must be endonucleolytically processed 42 nucleotides from the 5' end to yield a +42 translationally competent mRNA. [3] [4] In the +42 form, the mRNA has a ribosome loading/standby site in an unstructured region >80 nt upstream of the tisB ribosome binding site, thus allowing translation of the TisB protein. This standby site is structurally unavailable in the inactive forms of the tisB mRNA (the +1 form and the +106 form produced by RNase III cleavage). [3]

Mechanism of TisB inhibition by IstR-1

IstR-1 is thought to both inhibit translation of the TisB toxin, and promote RNase III cleavage of the RNA duplex formed when IstR-1 base pairs to tisB mRNA. Binding of the complementary sequence of istR-1 sRNA to tisB mRNA in the ribosome standby site is thought to prevent loading of ribosomes and therefore prevent translation of the TisB protein. [5] A RACE analysis confirmed that IstR-1 binds TisB mRNA and the duplex is then degraded by RNase III. [6] Degradation results in a +106 form, an inactive 249 nt transcript which cannot be translated. [1]

Proposed function of the IstR-TisB toxin-antitoxin system

The proposed function of this toxin-antitoxin system is to cause growth arrest, rather than cell death, in response to DNA damage, allowing time for repair processes to occur. TisB translation is under LexA control, so it is induced by DNA damage as part of the SOS response. [3] Under normal conditions, very little tisB mRNA is synthesised and translation is inhibited, but when DNA damage occurs tisAB is strongly induced causing overexpression, which overrides inhibition by depleting the IstR-1 pool. [2]

Experimental data has shown effects of TisB to be decreases in transcription, translation and replication, RNA degradation and ribosome disassembly. TisB does not affect transcription and translation directly in vitro, so these effects are thought to be downstream consequences of membrane damage. [4]

TisB insertion into the membrane is thought to result in a loss of membrane potential. This could account for a decrease in ATP concentration in cells following triggering of the SOS response, causing slowing of cellular processes and inhibited cell growth. [4] Also, it has been suggested that TisB may have a role in stabilising the bacterial persistence state after treatment of Escherichia coli with fluoroquinolones. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Shiga toxin</span> Family of related toxins

Shiga toxins are a family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages. The toxins are named after Kiyoshi Shiga, who first described the bacterial origin of dysentery caused by Shigella dysenteriae. Shiga-like toxin (SLT) is a historical term for similar or identical toxins produced by Escherichia coli. The most common sources for Shiga toxin are the bacteria S. dysenteriae and some serotypes of Escherichia coli (STEC), which includes serotypes O157:H7, and O104:H4.

<span class="mw-page-title-main">Ribonuclease</span> Class of enzyme that catalyzes the degradation of RNA

Ribonuclease is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 and 3.1 classes of enzymes.

<span class="mw-page-title-main">SOS response</span> Biological process

The SOS response is a global response to DNA damage in which the cell cycle is arrested and DNA repair and mutagenesis is induced. The system involves the RecA protein. The RecA protein, stimulated by single-stranded DNA, is involved in the inactivation of the repressor (LexA) of SOS response genes thereby inducing the response. It is an error-prone repair system that contributes significantly to DNA changes observed in a wide range of species.

<span class="mw-page-title-main">Transfer-messenger RNA</span>

Transfer-messenger RNA is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex (tmRNP) together with Small Protein B (SmpB), Elongation Factor Tu (EF-Tu), and ribosomal protein S1. In trans-translation, tmRNA and its associated proteins bind to bacterial ribosomes which have stalled in the middle of protein biosynthesis, for example when reaching the end of a messenger RNA which has lost its stop codon. The tmRNA is remarkably versatile: it recycles the stalled ribosome, adds a proteolysis-inducing tag to the unfinished polypeptide, and facilitates the degradation of the aberrant messenger RNA. In the majority of bacteria these functions are carried out by standard one-piece tmRNAs. In other bacterial species, a permuted ssrA gene produces a two-piece tmRNA in which two separate RNA chains are joined by base-pairing.

<span class="mw-page-title-main">Colicin</span> Type of bacteriocin produced by and toxic to some strains of Escherichia coli

A colicin is a type of bacteriocin produced by and toxic to some strains of Escherichia coli. Colicins are released into the environment to reduce competition from other bacterial strains. Colicins bind to outer membrane receptors, using them to translocate to the cytoplasm or cytoplasmic membrane, where they exert their cytotoxic effect, including depolarisation of the cytoplasmic membrane, DNase activity, RNase activity, or inhibition of murein synthesis.

Addiction modules are toxin-antitoxin systems. Each consists of a pair of genes that specify two components: a stable toxin and an unstable antitoxin that interferes with the lethal action of the toxin. Found first in Escherichia coli on low copy number plasmids, addiction modules are responsible for a process called the postsegregational killing effect. When bacteria lose these plasmid(s), the cured cells are selectively killed because the unstable antitoxin is degraded faster than the more stable toxin. The term "addiction" is used because the cell depends on the de novo synthesis of the antitoxin for cell survival. Thus, addiction modules are implicated in maintaining the stability of extrachromosomal elements.

<span class="mw-page-title-main">Sib RNA</span>

Sib RNA refers to a group of related non-coding RNA. They were originally named QUAD RNA after they were discovered as four repeat elements in Escherichia coli intergenic regions. The family was later renamed Sib when it was discovered that the number of repeats is variable in other species and in other E. coli strains.

<span class="mw-page-title-main">MicA RNA</span>

The MicA RNA is a small non-coding RNA that was discovered in E. coli during a large scale screen. Expression of SraD is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well.

<span class="mw-page-title-main">Hok/sok system</span>

The hok/sok system is a postsegregational killing mechanism employed by the R1 plasmid in Escherichia coli. It was the first type I toxin-antitoxin pair to be identified through characterisation of a plasmid-stabilising locus. It is a type I system because the toxin is neutralised by a complementary RNA, rather than a partnered protein.

<span class="mw-page-title-main">Non-stop decay</span>

Non-stop decay (NSD) is a cellular mechanism of mRNA surveillance to detect mRNA molecules lacking a stop codon and prevent these mRNAs from translation. The non-stop decay pathway releases ribosomes that have reached the far 3' end of an mRNA and guides the mRNA to the exosome complex, or to RNase R in bacteria for selective degradation. In contrast to nonsense-mediated decay (NMD), polypeptides do not release from the ribosome, and thus, NSD seems to involve mRNA decay factors distinct from NMD.

In a screen of the Bacillus subtilis genome for genes encoding ncRNAs, Saito et al. focused on 123 intergenic regions (IGRs) over 500 base pairs in length, the authors analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All the small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase, but undetectable during the stationary phase. Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor σA.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">Toxin-antitoxin system</span> Biological process

A toxin-antitoxin system consists of a "toxin" and a corresponding "antitoxin", usually encoded by closely linked genes. The toxin is usually a protein while the antitoxin can be a protein or an RNA. Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies. When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK).

<span class="mw-page-title-main">LdrD-RdlD toxin-antitoxin system</span>

RdlD RNA is a family of small non-coding RNAs which repress the protein LdrD in a type I toxin-antitoxin system. It was discovered in Escherichia coli strain K-12 in a long direct repeat (LDR) named LDR-D. This locus encodes two products: a 35 amino acid peptide toxin (ldrD) and a 60 nucleotide RNA antitoxin. The 374nt toxin mRNA has a half-life of around 30 minutes while rdlD RNA has a half-life of only 2 minutes. This is in keeping with other type I toxin-antitoxin systems.

<span class="mw-page-title-main">SymE-SymR toxin-antitoxin system</span>

The SymE-SymR toxin-antitoxin system consists of a small symbiotic endonuclease toxin, SymE, and a non-coding RNA symbiotic RNA antitoxin, SymR, which inhibits SymE translation. SymE-SymR is a type I toxin-antitoxin system, and is under regulation by the antitoxin, SymR. The SymE-SymR complex is believed to play an important role in recycling damaged RNA and DNA. The relationship and corresponding structures of SymE and SymR provide insight into the mechanism of toxicity and overall role in prokaryotic systems.

<span class="mw-page-title-main">FlmA-FlmB toxin-antitoxin system</span>

The FlmA-FlmB toxin-antitoxin system consists of FlmB RNA, a family of non-coding RNAs and the protein toxin FlmA. The FlmB RNA transcript is 100 nucleotides in length and is homologous to sok RNA from the hok/sok system and fulfills the identical function as a post-segregational killing (PSK) mechanism.

<span class="mw-page-title-main">TxpA-RatA toxin-antitoxin system</span>

The TxpA/RatA toxin-antitoxin system was first identified in Bacillus subtilis. It consists of a non-coding 222nt sRNA called RatA and a protein toxin named TxpA.

<i>Escherichia coli</i> sRNA

Escherichia coli contains a number of small RNAs located in intergenic regions of its genome. The presence of at least 55 of these has been verified experimentally. 275 potential sRNA-encoding loci were identified computationally using the QRNA program. These loci will include false positives, so the number of sRNA genes in E. coli is likely to be less than 275. A computational screen based on promoter sequences recognised by the sigma factor sigma 70 and on Rho-independent terminators predicted 24 putative sRNA genes, 14 of these were verified experimentally by northern blotting. The experimentally verified sRNAs included the well characterised sRNAs RprA and RyhB. Many of the sRNAs identified in this screen, including RprA, RyhB, SraB and SraL, are only expressed in the stationary phase of bacterial cell growth. A screen for sRNA genes based on homology to Salmonella and Klebsiella identified 59 candidate sRNA genes. From this set of candidate genes, microarray analysis and northern blotting confirmed the existence of 17 previously undescribed sRNAs, many of which bind to the chaperone protein Hfq and regulate the translation of RpoS. UptR sRNA transcribed from the uptR gene is implicated in suppressing extracytoplasmic toxicity by reducing the amount of membrane-bound toxic hybrid protein.

Ribonuclease E is a bacterial ribonuclease that participates in the processing of ribosomal RNA and the chemical degradation of bulk cellular RNA.

The dinQ-agrB type I toxin-antitoxin (TA) system was initially identified in Escherichia coli. This type I TA system is induced by the bacterial DNA damage response system known as the SOS response system.

References

  1. 1 2 3 4 5 Vogel J, Argaman L, Wagner EG, Altuvia S (December 2004). "The small RNA IstR inhibits synthesis of TisB, SOS-induced toxic peptide". Curr. Biol. 14 (24): 2271–2276. doi: 10.1016/j.cub.2004.12.003 . PMID   15620655. S2CID   18849002.
  2. 1 2 3 4 5 Darfeuille F, Unoson C, Vogel J, Wagner EG (May 2007). "An antisense RNA inhibits translation by competing with standby ribosomes". Mol. Cell. 26 (3): 381–392. doi: 10.1016/j.molcel.2007.04.003 . PMID   17499044.
  3. 1 2 3 Gerdes, K.; Wagner, E. (2007). "RNA antitoxins" (PDF). Current Opinion in Microbiology. 10 (2): 117–124. doi:10.1016/j.mib.2007.03.003. PMID   17376733.
  4. 1 2 3 Unoson, C.; Wagner, E. G. H. (2008). "A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli". Molecular Microbiology. 70 (1): 258–270. doi: 10.1111/j.1365-2958.2008.06416.x . PMID   18761622. S2CID   20418663.
  5. Weel-Sneve, R.; Bjørås, M.; Kristiansen, K. I. (2008). "Overexpression of the LexA-regulated tisAB RNA in E. Coli inhibits SOS functions; implications for regulation of the SOS response". Nucleic Acids Research. 36 (19): 6249–6259. doi:10.1093/nar/gkn633. PMC   2577331 . PMID   18832374.
  6. Sharma CM, Vogel J (October 2009). "Experimental approaches for the discovery and characterization of regulatory small RNA". Curr. Opin. Microbiol. 12 (5): 536–546. doi:10.1016/j.mib.2009.07.006. PMID   19758836.
  7. Edelmann, Daniel; Berghoff, Bork A. (2022). "A Shift in Perspective: A Role for the Type I Toxin TisB as Persistence-Stabilizing Factor". Frontiers in Microbiology. 13: 871699. doi: 10.3389/fmicb.2022.871699 . ISSN   1664-302X. PMC   8969498 . PMID   35369430.

Further reading