Tissue clearing

Last updated

Tissue clearing refers to a group of chemical techniques used to turn tissues transparent. [1] [2] [3] By turning tissues transparent to certain wavelengths of light, it allows one to gain optical access to a tissue. [1] That is, light can pass into and out of the cleared tissue freely, allowing one to see the structures deep within the tissue without physically cutting it open. Many tissue clearing methods exist, each with different strengths and weaknesses. [2] [4] Some are generally applicable, while others are designed for specific applications. [4] Tissue clearing is usually useful only combined with one or more fluorescent labeling techniques such as immunolabeling and subsequently imaged, most often by optical sectioning microscopy techniques. [1] [5] [6] Tissue clearing has been applied to many areas in biological research. [7] It is one of the more efficient ways to perform three-dimensional histology.

Contents

History

In the early 1900s, Werner Spalteholz developed a technique that allowed the clarification of large tissues, [2] [8] using Wintergrünöl (methyl salicylate) and benzyl benzoate. [9] Various scientists then introduced their own variations on Spalteholz's technique. [8] Tuchin et al. introduced tissue optical clearing (TOC) in 1997, adding a new branch of tissue clearing that was hydrophilic instead of hydrophobic like Spalteholz's technique. [1] [10] In the 1980s, Andrew Murray & Marc Kirschner developed a two-step process, wherein tissues were first dehydrated with alcohol and subsequently made transparent by immersion in a mixture of benzyl alcohol and benzyl benzoate (BABB), a technique they coupled with light sheet fluorescence microscopy, [11] [2] [3] which remains the method with the highest clearing efficacy to date, regardless any tissue pre-processing step. [12] In the most extreme case, it allows the clearing of a whole mouse of even a whole human brain. [13]

In 2024, Hong, Brongersma, and Ou reported that applying high concentrations of the food dye tartrazine could transiently and reversibly increase the optical transparency of certain biological tissues, including the skin, in live mice. [14] [15] [16] The authors attributed this effect to tartrazine's strong absorption in the blue region of the visible spectrum and to refractive index modulation at longer wavelengths, consistent with the Kramers–Kronig relations. Following publication, the findings have been independently reproduced and extended by multiple laboratories in several subsequent studies. [17] [18] [19] [20] Specifically, this in vivo optical clearing approach has been applied by multiple independent laboratories to enhance imaging depth in modalities such as optical coherence tomography and photoacoustic imaging. [17] [20] [21] [22] [23] [24] In 2025, Valery V. Tuchin, a pioneer in hydrophilic tissue clearing, demonstrated tartrazine can make the skull more transparent in live mice, enabling transcranial laser speckle imaging of cortical blood flow in real time. [18] In addition, a number of other labs have demonstrated the utility of tartrazine to enable deep-tissue Raman sensing [25] and fluorescence lifetime imaging. [26] In addition to tartrazine, several other absorbing dye molecules, including the FDA-approved contrast agents fluorescein and indocyanine green, have also been repurposed to function as in vivo optical clearing agents. [27] [28] [29] This observation suggests that the underlying physical principle of dye-enabled optical clearing is not limited to a single molecule and that multiple dye molecules may be repurposed as tissue clearing agents.

Principles

Tissue opacity is thought to be the result of light scattering due to heterogeneous refractive indices. [1] [4] [5] Tissue clearing methods chemically homogenize refractive indices, resulting in almost completely transparent tissue. [4] [6]

Classifications

While there are multiple class names for tissue-clearing methods, they are all classified based on the final state of the tissue by the end of the clearing method. [1] These include hydrophobic clearing methods, [1] [2] [6] which may also be known as organic, [3] solvent-based, [4] [5] organic solvent-based, [30] [31] or dehydration [32] clearing methods; hydrophilic clearing methods, [1] [2] [6] which may also be known as aqueous-based [5] [30] or water-based [32] methods, and hydrogel-based clearing methods. [2] [1]

Labeling

Tissue clearing methods have varying compatibility with different methods of fluorescent labeling. [1] [5] [6] Some are better suited to genetic labelling by endogenously expressed fluorescent protein, [1] [5] while others externally delivered probes as immunolabeling and chemical dye labeling. [1] [5] The latter is more general and applicable to all tissues, notably human tissues, but the penetration of the probes becomes a critical problem. [33]

Imaging

After clearing and labeling, tissues are typically imaged using confocal microscopy, [30] [31] [32] two-photon microscopy, [1] [5] [30] or one of the many variants of light-sheet fluorescence microscopy. [7] [30] [31] Other less commonly used methods include optical projection tomography [1] [5] and stimulated Raman scattering. [5] [7] [30] As long as the tissue allows for the unobstructed passing of light, the optical resolution is fundamentally limited by Abbe diffraction limit. The compatibility of any tissue clearing method with any microscopy system is, therefore, configurational rather than optical.

Data

Tissue clearing is one of the more efficient ways to facilitate 3D imaging of tissues, and hence generates massive volumes of complex data, which requires powerful computational hardware and software to store, process, analyze, and visualize. [1] [6] [32] A single mouse brain can generate terabytes of data. [2] [6] [32] Both commercial and open-source software exists to address this need, some of it adapted from solutions for two-dimensional images and some of it designed specifically for the three-dimensional images produced by imaging of cleared tissues. [1] [30] [31]

Applications

Tissue clearing has been applied to the nervous system, [1] [2] [3] [4] [5] [6] [7] [30] [34] [35] bones (including teeth), [7] [30] [31] [36] [37] [38] skeletal muscles, [7] [38] [39] hearts and vasculature, [7] [30] [40] gastrointestinal organs, [7] [41] urogenital organs, [7] [30] [42] skin, [7] [43] lymph nodes, [7] mammary glands, [7] lungs, [7] eyes, [7] tumors, [7] [30] and adipose tissues. [7] [30] Whole-body clearing is less common, but has been done in smaller animals, including rodents. [1] [6] [7] Tissue clearing has also been applied to human cancer tissues. [44] [45] For some techniques, bone tissue must be decalcified to remove light-scattering hydroxyapatite crystals, leaving behind a protein matrix suitable for clearing. [46] [47]

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Zhao J, Lai HM, Qi Y, He D, Sun H (January 2021). "Current Status of Tissue Clearing and the Path Forward in Neuroscience". ACS Chemical Neuroscience. 12 (1): 5–29. doi:10.1021/acschemneuro.0c00563. PMID   33326739. S2CID   229300600.
  2. 1 2 3 4 5 6 7 8 9 Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ (May 2020). "Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy". Neuron. 106 (3): 369–387. doi:10.1016/j.neuron.2020.03.004. PMC   7213014 . PMID   32380050.
  3. 1 2 3 4 Vigouroux RJ, Belle M, Chédotal A (July 2017). "Neuroscience in the third dimension: shedding new light on the brain with tissue clearing". Molecular Brain. 10 (1): 33. doi: 10.1186/s13041-017-0314-y . PMC   5520295 . PMID   28728585.
  4. 1 2 3 4 5 6 Porter DD, Morton PD (January 2020). "Clearing techniques for visualizing the nervous system in development, injury, and disease". Journal of Neuroscience Methods. 334 108594. doi:10.1016/j.jneumeth.2020.108594. PMC   10674098 . PMID   31945400. S2CID   210430342.
  5. 1 2 3 4 5 6 7 8 9 10 11 Tian T, Li X (November 2020). "Applications of tissue clearing in the spinal cord". The European Journal of Neuroscience. 52 (9): 4019–4036. doi:10.1111/ejn.14938. PMID   32794596. S2CID   221121163.
  6. 1 2 3 4 5 6 7 8 9 Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ (February 2020). "Tissue clearing and its applications in neuroscience". Nature Reviews. Neuroscience. 21 (2): 61–79. doi:10.1038/s41583-019-0250-1. PMC   8121164 . PMID   31896771. S2CID   209528204.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M (August 2020). "Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease". iScience. 23 (8) 101432. Bibcode:2020iSci...23j1432G. doi:10.1016/j.isci.2020.101432. PMC   7452225 . PMID   32805648.
  8. 1 2 Azaripour A, Lagerweij T, Scharfbillig C, Jadczak AE, Willershausen B, Van Noorden CJ (August 2016). "A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue". Progress in Histochemistry and Cytochemistry. 51 (2): 9–23. doi: 10.1016/j.proghi.2016.04.001 . PMID   27142295.
  9. Spalteholz W (1914). Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung. Leipzig: S. Hirzel.
  10. Tuchin VV, Maksimova IL, Zimnyakov DA, Kon IL, Mavlyutov AH, Mishin AA (October 1997). "Light propagation in tissues with controlled optical properties". Journal of Biomedical Optics. 2 (4): 401–17. Bibcode:1997JBO.....2..401T. doi: 10.1117/12.281502 . PMID   23014964.
  11. Dent; Polson; Klymkowsky (1989). "A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus". Development. 105 (1): 61–74. doi:10.1242/dev.105.1.61. PMID   2806118.
  12. Pan, Chenchen; Cai, Ruiyao; Quacquarelli, Francesca Paola; Ghasemigharagoz, Alireza; Lourbopoulos, Athanasios; Matryba, Paweł; Plesnila, Nikolaus; Dichgans, Martin; Hellal, Farida; Ertürk, Ali (2016). "Shrinkage-mediated imaging of entire organs and organisms using uDISCO". Nature Methods. 13 (10): 859-867. doi:10.1038/nmeth.3964. PMID   27548807.
  13. Zhao, Shan; Mihail Ivilinov, Todorov; Ruiyao, Cai; Rami, AI -Maskari; Hanno, Steinke; Elisabeth, Kemter; Hongcheng, Mai; Zhouyi, Rong; Martin, Warmer; Karen, Stanic; Oliver, Schoppe; Johannes Christian, Paetzold; Benno, Gesierich; Milagros N., Wong; Tobias B., Huber; Marco, Duering; Oliver Thomas, Bruns; Bjoern, Menze; Jan, Lipfert (2020). "Cellular and Molecular Probing of Intact Human Organs". Cell. 2020 (4): 796–812.e19. doi:10.1016/j.cell.2020.01.030. PMC   7557154 . PMID   32059778.
  14. Ou, Zihao; Duh, Yi-Shiou; Rommelfanger, Nicholas J.; Keck, Carl H. C.; Jiang, Shan; Brinson, Kenneth; Zhao, Su; Schmidt, Elizabeth L.; Wu, Xiang; Yang, Fan; Cai, Betty; Cui, Han; Qi, Wei; Wu, Shifu; Tantry, Adarsh (2024-09-06). "Achieving optical transparency in live animals with absorbing molecules". Science. 385 (6713) eadm6869. doi:10.1126/science.adm6869. PMC   11931656 . PMID   39236186.
  15. Keck, Carl H. C.; Schmidt, Elizabeth Lea; Zhao, Su; Liu, Zhongyu; Zhang, Ling-Yi; Cui, Miao; Chen, Xiaoyu; Wang, Chonghe; Cui, Han; Brongersma, Mark L.; Hong, Guosong (2025-05-13). "Achieving transient and reversible optical transparency in live mice with tartrazine". Nature Protocols: 1–28. doi:10.1038/s41596-025-01187-z. ISSN   1750-2799.
  16. Shabbir, Muhammad Waqas; Asante-Asare, David; Phillips, Matthew; Ou, Zihao (2025-07-11). "Transient Optical Clearing Using Absorbing Molecules for Ex Vivo and In Vivo Imaging". Journal of Visualized Experiments (JoVE) (221) e68629. doi:10.3791/68629. ISSN   1940-087X.
  17. 1 2 Miller, David A.; Xu, Yirui; Highland, Robert; Nguyen, Van Tu; Brown, William J.; Hong, Guosong; Yao, Junjie; Wax, Adam (2025-01-20). "Enhanced penetration depth in optical coherence tomography and photoacoustic microscopy in vivo enabled by absorbing dye molecules". Optica. 12 (1): 24. doi:10.1364/OPTICA.546779. ISSN   2334-2536.
  18. 1 2 Surkov, Y.; Timoshina, P.; Uvakin, I.; Shushunova, N.; Konovalov, A.; Kozlov, I.; Piavchenko, G.; Telyshev, D.; Meglinski, I.; Kuznetsov, S.; Tuchin, V. (2025-10-16). "Computer-guided optical clearing for transcranial laser speckle imaging of cortical blood flow through synergistic tartrazine-induced cranial bone transparency". Journal of Innovative Optical Health Sciences: 2540002. doi:10.1142/S1793545825400024. ISSN   1793-5458.
  19. Tie, Xin; Sun, Ting; Xiao, Guixiu; Zhao, Yanjie; Su, Jing; Xie, Xiaoqi; Yin, Wanhong (2024-11-01), Absorbing molecules make both abdomen and back transparent in live mice, bioRxiv, doi:10.1101/2024.10.28.620537 , retrieved 2025-12-23
  20. 1 2 Zuo, Tianxiang; Tao, Chao; Liu, Xiaojun (2025-04-01). "Absorbing molecules as optical clearing agents improve the resolution and sensitivity of photoacoustic microscopy". Optics Letters. 50 (7): 2282. doi:10.1364/OL.555723. ISSN   0146-9592.
  21. Jia, Conger; Zhang, Zhiling; Shen, Yuecheng; Hou, Wanli; Zhao, Jiayu; Luo, Jiawei; Chen, Haoran; Qi, Dalong; Yao, Yunhua; Deng, Lianzhong; Ma, Hongmei; Sun, Zhenrong; Zhang, Shian (2025-06-01). "Tartrazine-enabled optical clearing for in vivo optical resolution photoacoustic microscopy". Biomedical Optics Express. 16 (6): 2504. doi:10.1364/BOE.565643. ISSN   2156-7085.
  22. Xu, Maoyuan; Yang, Bingqian; Song, Shen; Xu, Tianpeng; Yao, Jinyu; Liu, Yuehao; Cui, Yaoyao; Zhang, Yachao (2025-10-01). "Multi-wavelength photoacoustic microscopy enhanced by the high-sensitivity probe and reversible tissue transparent molecules". Photonics Research. 13 (10): 2757. doi:10.1364/PRJ.565972. ISSN   2327-9125.
  23. Liang, Yilin; Meng, Xiaochen; Wang, Chongyang; Ma, Jiawei; Zhang, Xuanye; Fan, Fan; Zhu, Jiang (September 2025). "Optical Coherence Tomography and Angiography Image Enhancement Using Optical Clearing Agent Tartrazine". Journal of Biophotonics. doi:10.1002/jbio.202500297. ISSN   1864-063X.
  24. Narawane, Amit; Trout, Robert; Viehland, Christian; Kuo, Anthony N.; Vajzovic, Lejla; Dhalla, Al-Hafeez; Toth, Cynthia A. (2024-12-09). "Optical clearing with tartrazine enables deep transscleral imaging with optical coherence tomography". Journal of Biomedical Optics. 29 (12). doi:10.1117/1.JBO.29.12.120501. ISSN   1083-3668.
  25. Lee, Michael Ka Ho; Mizushima, Kenta; Zheng, Peng; Tanwar, Swati; Gupta, Anoushka; Fujita, Katsumasa; Barman, Ishan (2025-10-24). "Spectrally Silent and Optically Transparent: Clear-SiR for Deep Raman Biomolecular Sensing". ACS Sensors. 10 (10): 7702–7711. doi:10.1021/acssensors.5c02046.
  26. Yuan, Nanxue; Ragab, Saif; Chavez, Luis; Pandey, Vikas; Intes, Xavier (2025-12-15). "Evaluating tartrazine as an optical clearing agent for fluorescence lifetime imaging". Optics Letters. 50 (24): 7588. doi:10.1364/OL.579040. ISSN   0146-9592.
  27. Trout, Robert M; Narawane, Amit; Viehland, Christian; Ownagh, Vahid; Draelos, Mark; Dhalla, Al-Hafeez; Kuo, Anthony; Toth, Cynthia (2025-07-05), Optical Coherence Tomography with Fluorescein Optical Clearing for Transscleral Image Guidance, doi:10.1101/2025.07.01.661162, PMC   12236726 , PMID   40631313 , retrieved 2025-12-23
  28. Lu, Kechao; Xu, Yirui; Miller, David A.; Wang, Wan; Gupta, Deven; Yao, Junjie; Wax, Adam (2025-09-01). "Indocyanine green (ICG) enhances penetration of 1300 nm optical coherence tomography imaging for in vivo murine skin". Optics Letters. 50 (17): 5226. doi:10.1364/OL.569764. ISSN   0146-9592.
  29. Keck, Carl H. C.; Schmidt, Elizabeth L.; Roth, Richard H.; Floyd, Brendan M.; Tsai, Andy P.; Garcia, Hassler B.; Cui, Miao; Chen, Xiaoyu; Wang, Chonghe; Park, Andrew; Zhao, Su; Liao, Pinyu A.; Casey, Kerriann M.; Reineking, Wencke; Cai, Sa (2025-09-02). "Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice". Proceedings of the National Academy of Sciences. 122 (35) e2504264122. doi:10.1073/pnas.2504264122. PMC   12415250 . PMID   40857313.
  30. 1 2 3 4 5 6 7 8 9 10 11 12 13 Tian T, Yang Z, Li X (February 2021). "Tissue clearing technique: Recent progress and biomedical applications". Journal of Anatomy. 238 (2): 489–507. doi:10.1111/joa.13309. PMC   7812135 . PMID   32939792.
  31. 1 2 3 4 5 Jing D, Yi Y, Luo W, Zhang S, Yuan Q, Wang J, et al. (June 2019). "Tissue Clearing and Its Application to Bone and Dental Tissues". Journal of Dental Research. 98 (6): 621–631. doi:10.1177/0022034519844510. PMC   6535919 . PMID   31009584.
  32. 1 2 3 4 5 Watson AM, Watkins SC (July 2019). "Massive volumetric imaging of cleared tissue: The necessary tools to be successful". The International Journal of Biochemistry & Cell Biology. 112: 76–78. doi:10.1016/j.biocel.2019.05.007. PMID   31085331. S2CID   155088859.
  33. Yau, Chun Ngo; Hei Ming, Lai (2023). "Principles of deep immunohistochemistry for 3D histology". Cell Reports Methods. 3 (5). doi:10.1016/j.crmeth.2023.100458. PMC   10261851 . PMID   37323568.
  34. Kumar V, Krolewski DM, Hebda-Bauer EK, Parsegian A, Martin B, Foltz M, et al. (March 2021). "Optimization and evaluation of fluorescence in situ hybridization chain reaction in cleared fresh-frozen brain tissues". Brain Structure & Function. 226 (2): 481–499. doi:10.1007/s00429-020-02194-4. PMC   7962668 . PMID   33386994.
  35. Dai Z, Sun Y, Zhao X, Pu X (June 2020). "Novel imaging and related techniques for studies of diseases of the central nervous system: a review". Cell and Tissue Research. 380 (3): 415–424. doi:10.1007/s00441-020-03183-z. PMID   32072308. S2CID   211170939.
  36. Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, et al. (April 2017). "Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow". Science Translational Medicine. 9 (387) eaah6518. doi:10.1126/scitranslmed.aah6518. PMID   28446689. S2CID   8799170.
  37. Treweek JB, Beres A, Johnson N, Greenbaum A (2021). "Phenotyping Intact Mouse Bones Using Bone CLARITY". In Hilton MJ (ed.). Skeletal Development and Repair. Methods in Molecular Biology. Vol. 2230. New York, NY: Springer US. pp. 217–230. doi:10.1007/978-1-0716-1028-2_13. ISBN   978-1-0716-1028-2. PMID   33197017. S2CID   226988513.
  38. 1 2 Wang HM, Khoradmehr A, Tamadon A, Velez E, Nabipour I, Jokar N, et al. (March 2020). "Imaging of the muscle and bone from benchtop to bedside". European Review for Medical and Pharmacological Sciences. 24 (6): 3254–3266. doi:10.26355/eurrev_202003_20693. PMID   32271443. S2CID   215602325.
  39. Li Y, Xu J, Zhu J, Yu T, Zhu D (January 2020). "Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method". Neurophotonics. 7 (1) 015003. doi:10.1117/1.NPh.7.1.015003. PMC   6977403 . PMID   32016132.
  40. Olianti C, Costantini I, Giardini F, Lazzeri E, Crocini C, Ferrantini C, et al. (August 2020). "3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls". Scientific Reports. 10 (1): 14276. Bibcode:2020NatSR..1014276O. doi:10.1038/s41598-020-71174-9. PMC   7459314 . PMID   32868776.
  41. Liu CY, Polk DB (July 2020). "Cellular maps of gastrointestinal organs: getting the most from tissue clearing". American Journal of Physiology. Gastrointestinal and Liver Physiology. 319 (1): G1 –G10. doi:10.1152/ajpgi.00075.2020. PMC   7468759 . PMID   32421359.
  42. Isaacson D, McCreedy D, Calvert M, Shen J, Sinclair A, Cao M, et al. (2020-01-01). "Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy". Differentiation; Research in Biological Diversity. 111: 12–21. doi:10.1016/j.diff.2019.09.006. PMID   31634681. S2CID   204833112.
  43. Fernandez E, Marull-Tufeu S (September 2019). "3D imaging of human epidermis micromorphology by combining fluorescent dye, optical clearing and confocal microscopy". Skin Research and Technology. 25 (5): 735–742. doi:10.1111/srt.12710. PMID   31074525. S2CID   149445451.
  44. Tanaka N, Kanatani S, Tomer R, Sahlgren C, Kronqvist P, Kaczynska D, Louhivuori L, Kis L, Lindh C, Mitura P, Stepulak A, Corvigno S, Hartman J, Micke P, Mezheyeuski A, Strell C, Carlson JW, Fernández Moro C, Dahlstrand H, Östman A, Matsumoto K, Wiklund P, Oya M, Miyakawa A, Deisseroth K, Uhlén P (October 2017). "Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity". Nature Biomedical Engineering. 1 (10): 796–806. doi:10.1038/s41551-017-0139-0. PMID   31015588. S2CID   256713371.
  45. Tanaka N, Kanatani S, Kaczynska D, Fukumoto K, Louhivuori L, Mizutani T, Kopper O, Kronqvist P, Robertson S, Lindh C, Kis L, Pronk R, Niwa N, Matsumoto K, Oya M, Miyakawa A, Falk A, Hartman J, Sahlgren C, Clevers H, Uhlén P (September 2020). "Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies". Nature Biomedical Engineering. 4 (9): 875–888. doi:10.1038/s41551-020-0576-z. PMID   32601394. S2CID   256704785.
  46. Zhao J, Lai HM, Qi Y, He D, Sun H (January 2021). "Current Status of Tissue Clearing and the Path Forward in Neuroscience". ACS Chemical Neuroscience. 12 (1): 5–29. doi:10.1021/acschemneuro.0c00563. PMID   33326739. S2CID   229300600.
  47. Vigouroux RJ, Belle M, Chédotal A (July 2017). "Neuroscience in the third dimension: shedding new light on the brain with tissue clearing". Molecular Brain. 10 (1): 33. doi: 10.1186/s13041-017-0314-y . PMC   5520295 . PMID   28728585.