Transition engineering is the professional-engineering discipline that deals with the application of the principles of science to the design, innovation and adaptation of engineered systems that meet the needs of today without compromising the ecological, societal and economic systems on which future generations will depend to meet their own needs. Today safety is an expected consideration in design, operation and end use. Transition Engineering aims for a similar consideration of sustainability. Transition engineering is a trans-disciplinary field that addresses wicked problems while creating opportunities to increase resilience and adaptation through change projects. [1]
Engineering professions emerge when new technologies, new problems or new opportunities arise. This was the case when safety engineering grew in the early 1900s to combat the high workplace injury and fatality rates. In the 1960s, Environmental engineering emerged as a discipline to reduce industrial pollution and mitigate impacts on environmental health and water quality. Quality engineering came about with the increase in mass production techniques during WWII and the need to confirm the quality of the products. When engineered systems must change, either due to failure risks, obsolescence or modernisation, change management is a well-known process. Transition Engineering is focused on identifying the unsustainable aspects of currently operational engineered systems, innovating the projects that down-shift the unsustainable energy, material, environmental and social aspects, and then carrying out an inclusive change management process.
There are two serious problems driving the emergence of Transition Engineering; the exponential growth in the concentration of carbon dioxide in Earth’s atmosphere and the lack of growth and imminent decline of conventional oil production sometimes characterised as peak oil. The concentration of carbon dioxide in the atmosphere ran past the "climate safe" 350 ppm range in the 1990s, and has now exceeded 420ppm, a level that Earth has not known for 800,000 years. [2] Transition engineering aims to take advantage of the current access to the remaining lower cost and higher EROI energy resources to re-develop all aspects of urban and industrial engineered systems to adapt as fossil fuel use is dramatically reduced. [3]
Recognition of the field of Transition Engineering and Energy Transition Engineering started in 2010 when the Institution of Engineering and Technology (IET) Prestige Lecture in NZ was given by Associate Professor Susan Krumdieck, University of Canterbury. [4]
In 2014 the engineering text book, "Principles of Sustainable Energy Systems" by Professor Frank Kreith, featured Chapter 13 on Transition Engineering. [5] In 2017, Transition Engineering was invited for Chapter 32 the book "Energy Solutions to Combat Global Warming". [6] In 2019, a full text on the methodologies and principles of transition engineering was published, "Transition Engineering, Building a Sustainable Future". [7]
Since 2015, Transition Engineering has been taught at the university level in a range of full courses, workshops, guest lectures and seminars. Courses have been held in Grenoble INP, France; Munich University of Applied Sciences, Germany; University of Duisburg-Essen, Germany; Bristol University, UK; at University of Canterbury, New Zealand, and Heriot-Watt University, Scotland. In 2020 the first on-line courses were offered continuing professional development for engineers and other professionals.
The idea behind transition engineering originated from many different roots, both technical and non-technical. The concept of sustainable development has been around since 1987 and the problem of sustainability was a driving force in the development of transition engineering. The Transition Town movement provided further inspiration as it showed that there were many groups of people around the world motivated to prepare for peak oil and climate change. Transition towns and ecovillages demonstrate the need for engineers to build systems that manage un-sustainable risks and provide people with sustainable options. Engineers are ethically required to "hold paramount the safety, health and welfare of the public" and answer society's need for sustainable development [8]
The origins of safety engineering provided much of the inspiration for transition engineering. At the beginning of the 1900s, business owners viewed workplace safety as a wasted investment and politicians were slow to change. After the Triangle Shirtwaist Factory fire in New York City killed 156 trapped workers, 62 engineers came together to investigate how to make the workplace a safer place to be. This eventually lead to the formation of the American Society of Safety Engineers. [9]
As safety engineering manages the risks of unsafe conditions, transition engineering manages the risks of unsustainable conditions. To give engineers a better grasp of sustainability, transition engineering defines the problem as UN-sustainability. This is similar to the problem of un-safe conditions that is the purpose of safety engineering. We do not necessarily know what a perfectly safe system looks like, but we do know what unsafe systems look like and how to improve them; the same applies to unsustainability of systems. By reducing unsustainability issues we take steps in the right direction [10]
The Transition Engineering method involves seven steps to help engineers develop projects to deal with changing unsustainable activities. As a discipline, Transition Engineering recognizes that "Business as Usual" projections of future scenarios from past trends are not valid because the underlying conditions have changed sufficiently from the conditions of the past. For example, the projection of future oil supply in 2050 from data prior to 2005 would give an expectation of a 50% increase in demand over that time-frame. However, the actual production rate of conventional oil has not increased since 2005 and is projected to decline by more than 50% by 2050. [11]
GATE opened the first group in the UK in Feb 2014. GATE is a Professional Engineering Institution; a membership association and learned society, and comprises an emerging network of engineers and non-engineers that share the idea that engineers are responsible for changing engineered systems in order to adapt to reducing fossil fuel and other unsustainable resources. Transition Engineering is a change management discipline. Like Safety Engineering, Transition Engineering uses and audit and stock-take of current system design and operation to quantify the risks to essential activities and resources over a time-frame of study. The time-frame of study should be commensurate with the lifetime of the assets involved in the activity. An activity is anything that the engineered system supports, for example manufacturing, sewage treatment, mobility, or food preservation. Transition Engineering recognizes that the analytical methods of strategic analysis over a life-cycle time-frame are at odds with most economic analyses that discount values with time. The strategic analysis carried out by Transition Engineers seeks to avoid stranded investment by recognizing resource risks. A classic example of stranded investments is the North Atlantic Cod Fishery – where the largest number of bottom trawling ships (e.g. those ships responsible for destroying the Cod spawning beds) were manufactured in the year that the fish stocks collapsed. [17] [18] The Global Association for Transition Engineering is registered charity number 1166048, registered with the UK Charity Commission on 14 March 2016. It is a "Charitable Incorporated Organisation" or CIO.
Published in Nov 2019 by CRC Press, Taylor & Francis The textbook sets out the premise, processes, methods and tools of Transition Engineering. The book includes the perspective stories that Professor Susan Krumdieck has used for sensemaking around wicked problems of change to downshift fossil fuels. Professor Krumdieck was awarded Queens New Years Honours in 2021 with New Zealand Order of Merit for her research, teaching and publication of the book. The book is also popular with non-technical readers. [19]
Transition Engineering, Building a Sustainable Future, Susan Krumdieck (2019) CRC Press, Taylor & Francis, Boca Raton
The Limits to Growth is a 1972 report that discussed the possibility of exponential economic and population growth with finite supply of resources, studied by computer simulation. The study used the World3 computer model to simulate the consequence of interactions between the Earth and human systems. The model was based on the work of Jay Forrester of MIT, as described in his book World Dynamics.
The International Energy Agency (IEA) is a Paris-based autonomous intergovernmental organisation, established in 1974, that provides policy recommendations, analysis and data on the global energy sector. The 31 member countries and 13 association countries of the IEA represent 75% of global energy demand.
The Natural Step is a non-profit, non-governmental organisation founded in Sweden in 1989 by scientist Karl-Henrik Robèrt. The Natural Step is also used when referring to the partially open source framework it developed. Following publication of the Brundtland Report in 1987, Robèrt developed The Natural Step framework, setting out the system conditions for the sustainability of human activities on Earth; Robèrt's four system conditions are derived from a scientific understanding of universal laws and the aspects of our socio-ecological system, including the laws of gravity, the laws of thermodynamics and a multitude of social studies.
Food engineering is a scientific, academic, and professional field that interprets and applies principles of engineering, science, and mathematics to food manufacturing and operations, including the processing, production, handling, storage, conservation, control, packaging and distribution of food products. Given its reliance on food science and broader engineering disciplines such as electrical, mechanical, civil, chemical, industrial and agricultural engineering, food engineering is considered a multidisciplinary and narrow field.
The National Energy Technology Laboratory (NETL) is a U.S. national laboratory under the Department of Energy Office of Fossil Energy. NETL focuses on applied research for the clean production and use of domestic energy resources. It performs research and development on the supply, efficiency, and environmental constraints of producing and using fossil energy resources while maintaining affordability.
The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative – parts of the process often need to be repeated many times before another can be entered – though the part(s) that get iterated and the number of such cycles in any given project may vary.
Backcasting is a planning method that starts with defining a desirable future and then works backwards to identify policies and programs that will connect that specified future to the present. The fundamentals of the method were outlined by John B. Robinson from the University of Waterloo in 1990. The fundamental question of backcasting asks: "if we want to attain a certain goal, what actions must be taken to get there?"
Energy descent is a process whereby a society either voluntarily or involuntarily reduces its total energy consumption.
Energy planning has a number of different meanings, but the most common meaning of the term is the process of developing long-range policies to help guide the future of a local, national, regional or even the global energy system. Energy planning is often conducted within governmental organizations but may also be carried out by large energy companies such as electric utilities or oil and gas producers. These oil and gas producers release greenhouse gas emissions. Energy planning may be carried out with input from different stakeholders drawn from government agencies, local utilities, academia and other interest groups.
Mark Diesendorf is an Australian academic and environmentalist, known for his work in sustainable development and renewable energy. He currently teaches environmental studies at the University of New South Wales, Australia. He was formerly professor of environmental science and founding director of the Institute for Sustainable Futures at the University of Technology, Sydney and before that a principal research scientist with CSIRO, where he was involved in early research on integrating wind power into electricity grids. His most recent book is Sustainable Energy Solutions for Climate Change.
Energy independence is independence or autarky regarding energy resources, energy supply and/or energy generation by the energy industry.
Degrowth is an academic and social movement critical of the hegemony of economic growth perpetuated by capitalism, and calls for an equitable and democratically-led downscaling of production and consumption in industrialised countries as a means to achieve environmental sustainability, social justice and well-being. Degrowth theory is based on ideas and research from a multitude of disciplines such as economics, economic anthropology, ecological economics, environmental sciences, and development studies. It argues that the unitary focus of modern capitalism on growth, in terms of the monetary value of aggregate goods and services, causes widespread ecological damage and is not necessary for the further increase of human living standards. Degrowth theory has been met with both academic acclaim and considerable criticism.
This page is an index of sustainability articles.
Sustainable engineering is the process of designing or operating systems such that they use energy and resources sustainably, in other words, at a rate that does not compromise the natural environment, or the ability of future generations to meet their own needs.
Sustainability measurement is a set of frameworks or indicators used to measure how sustainable something is. This includes processes, products, services and businesses. Sustainability is difficult to quantify. It may even be impossible to measure as there is no fixed definition. To measure sustainability, frameworks and indicators consider environmental, social and economic domains. The metrics vary by use case and are still evolving. They include indicators, benchmarks and audits. They include sustainability standards and certification systems like Fairtrade and Organic. They also involve indices and accounting. They can include assessment, appraisal and other reporting systems. The metrics are used over a wide range of spatial and temporal scales. For organizations, sustainability measures include corporate sustainability reporting and Triple Bottom Line accounting. For countries, they include estimates of the quality of sustainability governance or quality of life measures, or environmental assessments like the Environmental Sustainability Index and Environmental Performance Index. Some methods let us track sustainable development. These include the UN Human Development Index and ecological footprints.
Transition management is a governance approach that aims to facilitate and accelerate sustainability transitions through a participatory process of visioning, learning and experimenting. In its application, transition management seeks to bring together multiple viewpoints and multiple approaches in a 'transition arena'. Participants are invited to structure their shared problems with the current system and develop shared visions and goals which are then tested for practicality through the use of experimentation, learning and reflexivity. The model is often discussed in reference to sustainable development and the possible use of the model as a method for change.
Technological transitions (TT) can best be described as a collection of theories regarding how technological innovations occur, the driving forces behind them, and how they are incorporated into society. TT draws on a number of fields, including history of science, technology studies, and evolutionary economics. Alongside the technological advancement, TT considers wider societal changes such as "user practices, regulation, industrial networks, infrastructure, and symbolic meaning or culture". Hughes refers to the 'seamless web' where physical artifacts, organizations, scientific communities, and social practices combine. A technological transition occurs when there is a major shift in these socio-technical configurations.
Transition scenarios are descriptions of future states which combine a future image with an account of the changes that would need to occur to reach that future. These two elements are often created in a two-step process where the future image is created first (envisioning) followed by an exploration of the alternative pathways available to reach the future goal (backcasting). Both these processes can use participatory techniques where participants of varying backgrounds and interests are provided with an open and supportive group environment to discuss different contributing elements and actions.
Wolfgang Kröger has been full professor of Safety Technology at the ETH Zurich since 1990 and director of the Laboratory of Safety Analysis simultaneously. Before being elected Founding Rector of International Risk Governance Council (IRGC) in 2003, he headed research in nuclear energy and safety at the Paul Scherrer Institut (PSI). After his retirement early 2011 he became the Executive Director of the newly established ETH Risk Center. He has both Swiss and German citizenship and lives in Kilchberg, Zürich. His seminal work lies in the general area of reliability, risk and vulnerability analysis of large-scale technical systems, initially single complicated systems like nuclear power plants of different types and finally complex engineered networks like power supply systems, the latter coupled to other critical infrastructure and controlled by cyber-physical systems. He is known for his continuing efforts to advance related frameworks, methodology, and tools, to communicate results including uncertainties as well as for his successful endeavor in stimulating trans-boundary cooperation to improve governance of emerging systemic risks. His contributions to shape and operationalize the concept of sustainability and - more recently - the concept of resilience are highly valued. Furthermore, he is in engaged in the evaluation of smart clean, secure, and affordable energy systems and future technologies, including new ways of exploiting nuclear energy. The development and certification of cooperative automated vehicles, regarded as a cornerstone of future mobility concepts, are matter of growing interest.
Susan Pran Krumdieck is a New Zealand engineering academic. She was an academic from 2000 to 2020, and the first woman appointed to full professor in engineering in 2014 at the University of Canterbury. She is currently Professor and Chair in Energy Transition at Heriot-Watt University.