Translation surface

Last updated

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

Contents

These surfaces arise in dynamical systems where they can be used to model billiards, and in Teichmüller theory. A particularly interesting subclass is that of Veech surfaces (named after William A. Veech) which are the most symmetric ones.

Definitions

Geometric definition

A translation surface is the space obtained by identifying pairwise by translations the sides of a collection of plane polygons.

Here is a more formal definition. Let be a collection of (not necessarily convex) polygons in the Euclidean plane and suppose that for every side of any there is a side of some with and for some nonzero vector (and so that . Consider the space obtained by identifying all with their corresponding through the map .

The canonical way to construct such a surface is as follows: start with vectors and a permutation on , and form the broken lines and starting at an arbitrarily chosen point. In the case where these two lines form a polygon (i.e. they do not intersect outside of their endpoints) there is a natural side-pairing.

The quotient space is a closed surface. It has a flat metric outside the set images of the vertices. At a point in the sum of the angles of the polygons around the vertices which map to it is a positive multiple of , and the metric is singular unless the angle is exactly .

Analytic definition

Let be a translation surface as defined above and the set of singular points. Identifying the Euclidean plane with the complex plane one gets coordinates charts on with values in . Moreover, the changes of charts are holomorphic maps, more precisely maps of the form for some . This gives the structure of a Riemann surface, which extends to the entire surface by Riemann's theorem on removable singularities. In addition, the differential where is any chart defined above, does not depend on the chart. Thus these differentials defined on chart domains glue together to give a well-defined holomorphic 1-form on . The vertices of the polygon where the cone angles are not equal to are zeroes of (a cone angle of corresponds to a zero of order ).

In the other direction, given a pair where is a compact Riemann surface and a holomorphic 1-form one can construct a polygon by using the complex numbers where are disjoint paths between the zeroes of which form an integral basis for the relative cohomology.

Examples

The simplest example of a translation surface is obtained by gluing the opposite sides of a parallelogram. It is a flat torus with no singularities.

If is a regular -gon then the translation surface obtained by gluing opposite sides is of genus with a single singular point, with angle .

If is obtained by putting side to side a collection of copies of the unit square then any translation surface obtained from is called a square-tiled surface. The map from the surface to the flat torus obtained by identifying all squares is a branched covering with branch points the singularities (the cone angle at a singularity is proportional to the degree of branching).

RiemannRoch and GaussBonnet

Suppose that the surface is a closed Riemann surface of genus and that is a nonzero holomorphic 1-form on , with zeroes of order . Then the Riemann–Roch theorem implies that

If the translation surface is represented by a polygon then triangulating it and summing angles over all vertices allows to recover the formula above (using the relation between cone angles and order of zeroes), in the same manner as in the proof of the Gauss–Bonnet formula for hyperbolic surfaces or the proof of Euler's formula from Girard's theorem.

Translation surfaces as foliated surfaces

If is a translation surface there is a natural measured foliation on . If it is obtained from a polygon it is just the image of vertical lines, and the measure of an arc is just the euclidean length of the horizontal segment homotopic to the arc. The foliation is also obtained by the level lines of the imaginary part of a (local) primitive for and the measure is obtained by integrating the real part.

Moduli spaces

Strata

Let be the set of translation surfaces of genus (where two such are considered the same if there exists a holomorphic diffeomorphism such that ). Let be the moduli space of Riemann surfaces of genus ; there is a natural map mapping a translation surface to the underlying Riemann surface. This turns into a locally trivial fiber bundle over the moduli space.

To a compact translation surface there is associated the data where are the orders of the zeroes of . If is any integer partition of then the stratum is the subset of of translation surfaces which have a holomorphic form whose zeroes match the partition.

The stratum is naturally a complex orbifold of complex dimension (note that is the moduli space of tori, which is well-known to be an orbifold; in higher genus, the failure to be a manifold is even more dramatic). Local coordinates are given by

where and is as above a symplectic basis of this space.

Masur-Veech volumes

The stratum admits a -action and thus a real and complex projectivization . The real projectivization admits a natural section if we define it as the space of translation surfaces of area 1.

The existence of the above period coordinates allows to endow the stratum with an integral affine structure and thus a natural volume form . We also get a volume form on by disintegration of . The Masur-Veech volume is the total volume of for . This volume was proved to be finite independently by William A. Veech [1] and Howard Masur. [2]

In the 90's Maxim Kontsevich and Anton Zorich evaluated these volumes numerically by counting the lattice points of . They observed that should be of the form times a rational number. From this observation they expected the existence of a formula expressing the volumes in terms of intersection numbers on moduli spaces of curves.

Alex Eskin and Andrei Okounkov gave the first algorithm to compute these volumes. They showed that the generating series of these numbers are q-expansions of computable quasi-modular forms. Using this algorithm they could confirm the numerical observation of Kontsevich and Zorich. [3]

More recently Chen, Möller, Sauvaget, and don Zagier showed that the volumes can be computed as intersection numbers on an algebraic compactification of . Currently the problem is still open to extend this formula to strata of half-translation surfaces. [4]

The SL2(R)-action

If is a translation surface obtained by identifying the faces of a polygon and then the translation surface is that associated to the polygon . This defined a continuous action of on the moduli space which preserves the strata . This action descends to an action on that is ergodic with respect to .

Half-translation surfaces

Definitions

A half-translation surface is defined similarly to a translation surface but allowing the gluing maps to have a nontrivial linear part which is a half turn. Formally, a translation surface is defined geometrically by taking a collection of polygons in the Euclidean plane and identifying faces by maps of the form (a "half-translation"). Note that a face can be identified with itself. The geometric structure obtained in this way is a flat metric outside of a finite number of singular points with cone angles positive multiples of .

As in the case of translation surfaces there is an analytic interpretation: a half-translation surface can be interpreted as a pair where is a Riemann surface and a quadratic differential on . To pass from the geometric picture to the analytic picture one simply takes the quadratic differential defined locally by (which is invariant under half-translations), and for the other direction one takes the Riemannian metric induced by , which is smooth and flat outside of the zeros of .

Relation with Teichmüller geometry

If is a Riemann surface then the vector space of quadratic differentials on is naturally identified with the tangent space to Teichmüller space at any point above . This can be proven by analytic means using the Bers embedding. Half-translation surfaces can be used to give a more geometric interpretation of this: if are two points in Teichmüller space then by Teichmüller's mapping theorem there exists two polygons whose faces can be identified by half-translations to give flat surfaces with underlying Riemann surfaces isomorphic to respectively, and an affine map of the plane sending to which has the smallest distortion among the quasiconformal mappings in its isotopy class, and which is isotopic to .

Everything is determined uniquely up to scaling if we ask that be of the form , where , for some ; we denote by the Riemann surface obtained from the polygon . Now the path in Teichmüller space joins to , and differentiating it at gives a vector in the tangent space; since was arbitrary we obtain a bijection.

In facts the paths used in this construction are Teichmüller geodesics. An interesting fact is that while the geodesic ray associated to a flat surface corresponds to a measured foliation, and thus the directions in tangent space are identified with the Thurston boundary, the Teichmüller geodesic ray associated to a flat surface does not always converge to the corresponding point on the boundary, [5] though almost all such rays do so. [6]

Veech surfaces

The Veech group

If is a translation surface its Veech group is the Fuchsian group which is the image in of the subgroup of transformations such that is isomorphic (as a translation surface) to . Equivalently, is the group of derivatives of affine diffeomorphisms (where affine is defined locally outside the singularities, with respect to the affine structure induced by the translation structure). Veech groups have the following properties: [7]

Veech groups can be either finitely generated or not. [8]

Veech surfaces

A Veech surface is by definition a translation surface whose Veech group is a lattice in , equivalently its action on the hyperbolic plane admits a fundamental domain of finite volume. Since it is not cocompact it must then contain parabolic elements.

Examples of Veech surfaces are the square-tiled surfaces, whose Veech groups are commensurable to the modular group . [9] [10] The square can be replaced by any parallelogram (the translation surfaces obtained are exactly those obtained as ramified covers of a flat torus). In fact the Veech group is arithmetic (which amounts to it being commensurable to the modular group) if and only if the surface is tiled by parallelograms. [10]

There exists Veech surfaces whose Veech group is not arithmetic, for example the surface obtained from two regular pentagons glued along an edge: in this case the Veech group is a non-arithmetic Hecke triangle group. [9] On the other hand, there are still some arithmetic constraints on the Veech group of a Veech surface: for example its trace field is a number field [10] that is totally real. [11]

Geodesic flow on translation surfaces

Geodesics

A geodesic in a translation surface (or a half-translation surface) is a parametrised curve which is, outside of the singular points, locally the image of a straight line in Euclidean space parametrised by arclength. If a geodesic arrives at a singularity it is required to stop there. Thus a maximal geodesic is a curve defined on a closed interval, which is the whole real line if it does not meet any singular point. A geodesic is closed or periodic if its image is compact, in which case it is either a circle if it does not meet any singularity, or an arc between two (possibly equal) singularities. In the latter case the geodesic is called a saddle connection.

If (or in the case of a half-translation surface) then the geodesics with direction theta are well-defined on : they are those curves which satisfy (or in the case of a half-translation surface ). The geodesic flow on with direction is the flow on where is the geodesic starting at with direction if is not singular.

Dynamical properties

On a flat torus the geodesic flow in a given direction has the property that it is either periodic or ergodic. In general this is not true: there may be directions in which the flow is minimal (meaning every orbit is dense in the surface) but not ergodic. [12] On the other hand, on a compact translation surface the flow retains from the simplest case of the flat torus the property that it is ergodic in almost every direction. [13]

Another natural question is to establish asymptotic estimates for the number of closed geodesics or saddle connections of a given length. On a flat torus there are no saddle connections and the number of closed geodesics of length is equivalent to . In general one can only obtain bounds: if is a compact translation surface of genus then there exists constants (depending only on the genus) such that the both of closed geodesics and of saddle connections of length satisfy

Restraining to a probabilistic results it is possible to get better estimates: given a genus , a partition of and a connected component of the stratum there exists constants such that for almost every the asymptotic equivalent holds: [13]

,

The constants are called SiegelVeech constants. Using the ergodicity of the -action on , it was shown that these constants can explicitly be computed as ratios of certain Masur-Veech volumes. [14]

Veech dichotomy

The geodesic flow on a Veech surface is much better behaved than in general. This is expressed via the following result, called the Veech dichotomy: [15]

Let be a Veech surface and a direction. Then either all trajectories defied over are periodic or the flow in the direction is ergodic.

Relation with billiards

If is a polygon in the Euclidean plane and a direction there is a continuous dynamical system called a billiard. The trajectory of a point inside the polygon is defined as follows: as long as it does not touch the boundary it proceeds in a straight line at unit speed; when it touches the interior of an edge it bounces back (i.e. its direction changes with an orthogonal reflection in the perpendicular of the edge), and when it touches a vertex it stops.

This dynamical system is equivalent to the geodesic flow on a flat surface: just double the polygon along the edges and put a flat metric everywhere but at the vertices, which become singular points with cone angle twice the angle of the polygon at the corresponding vertex. This surface is not a translation surface or a half-translation surface, but in some cases it is related to one. Namely, if all angles of the polygon are rational multiples of there is ramified cover of this surface which is a translation surface, which can be constructed from a union of copies of . The dynamics of the billiard flow can then be studied through the geodesic flow on the translation surface.

For example, the billiard in a square is related in this way to the billiard on the flat torus constructed from four copies of the square; the billiard in an equilateral triangle gives rise to the flat torus constructed from an hexagon. The billiard in a "L" shape constructed from squares is related to the geodesic flow on a square-tiled surface; the billiard in the triangle with angles is related to the Veech surface constructed from two regular pentagons constructed above.

Relation with interval exchange transformations

Let be a translation surface and a direction, and let be the geodesic flow on with direction . Let be a geodesic segment in the direction orthogonal to , and defined the first recurrence, or Poincaré map as follows: is equal to where for . Then this map is an interval exchange transformation and it can be used to study the dynamic of the geodesic flow. [16]

Notes

  1. Veech, William A. (1982). "Gauss Measures for Transformations on the Space of Interval Exchange Maps". Annals of Mathematics. 115 (2): 201–242. doi:10.2307/1971391. JSTOR   1971391.
  2. Masur, Howard (1982). "Interval Exchange Transformations and Measured Foliations". Annals of Mathematics. 115 (1): 169–200. doi:10.2307/1971341. JSTOR   1971341.
  3. Eskin, Alex; Okounkov, Andrei (2001). "Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials". Inventiones Mathematicae. 145 (1): 59–103. arXiv: math/0006171 . Bibcode:2001InMat.145...59E. doi:10.1007/s002220100142. S2CID   14125769.
  4. Chen, Dawei; Möller, Martin; Sauvaget, Adrien; Zagier, Don Bernhard (2019). "Masur-Veech volumes and intersection theory on moduli spaces of abelian differentials". Inventiones Mathematicae. 222 (1): 283. arXiv: 1901.01785 . Bibcode:2020InMat.222..283C. doi:10.1007/s00222-020-00969-4. S2CID   119655348.
  5. Lenzhen, Anna (2008). "Teichmüller geodesics that do not have a limit in PMF". Geometry and Topology. 12: 177–197. arXiv: math/0511001 . doi:10.2140/gt.2008.12.177. S2CID   16047629.
  6. Masur, Howard (1982). "Two boundaries of TeichmÛller space". Duke Math. J. 49: 183–190. doi:10.1215/s0012-7094-82-04912-2. MR   0650376.
  7. Hubert & Schmidt 2006, Section 1.3, Structure of Veech Groups, pp. 12–15.
  8. McMullen, Curtis T. (2003). "Teichmüller geodesics of infinite complexity". Acta Math. 191 (2): 191–223. doi: 10.1007/bf02392964 .
  9. 1 2 Veech 1989.
  10. 1 2 3 Gutkin & Judge 2000.
  11. Hubert, Pascal; Lanneau, Erwan (2006). "Veech groups without parabolic elements". Duke Mathematical Journal. 133 (2): 335–346. arXiv: math/0503047 . doi:10.1215/s0012-7094-06-13326-4. S2CID   14274833.
  12. Masur 2006, Theorem 2.
  13. 1 2 Zorich 2006, 6.1.
  14. Eskin, Alex; Masur, Howard; Zorich, Anton (2003). "Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants". Publications Mathématiques de l'IHÉS. 97: 61–179. arXiv: math/0202134 . doi:10.1007/s10240-003-0015-1. S2CID   119713402.
  15. Veech 1989, Theorem 1.
  16. Zorich 2006, Chapter 5.

Related Research Articles

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:

<span class="mw-page-title-main">Etendue</span> Measure of the "spread" of light in an optical system

Etendue or étendue is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor. It is a central concept in nonimaging optics.

In mathematics, the Teichmüller space of a (real) topological surface is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

<span class="mw-page-title-main">SIC-POVM</span> Type of measurement in quantum mechanics

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

In mathematics, the Thurston boundary of Teichmüller space of a surface is obtained as the boundary of its closure in the projective space of functionals on simple closed curves on the surface. The Thurston boundary can be interpreted as the space of projective measured foliations on the surface.

<span class="mw-page-title-main">Yang–Mills equations</span> Partial differential equations whose solutions are instantons

In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the Euler–Lagrange equations of the Yang–Mills action functional. They have also found significant use in mathematics.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

Lightfieldmicroscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field. This technique allows sub-second (~10 Hz) large volumetric imaging with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods. Just as in traditional light field rendering, there are two steps for LFM imaging: light field capture and processing. In most setups, a microlens array is used to capture the light field. As for processing, it can be based on two kinds of representations of light propagation: the ray optics picture and the wave optics picture. The Stanford University Computer Graphics Laboratory published their first prototype LFM in 2006 and has been working on the cutting edge since then.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

Distributional data analysis is a branch of nonparametric statistics that is related to functional data analysis. It is concerned with random objects that are probability distributions, i.e., the statistical analysis of samples of random distributions where each atom of a sample is a distribution. One of the main challenges in distributional data analysis is that the space of probability distributions is, while a convex space, is not a vector space.

References