The transmission of hepadnaviruses between their natural hosts, humans, non-human primates, and birds, including intra-species host transmission and cross-species transmission, is a topic of study in virology.
Hepadnaviruses are a family of viruses that can cause liver infections in humans and animals. They are Group VII viruses that possess double-stranded DNA genomes and replicate using reverse transcriptase. This unique replication strategy, combined with their extremely small genomes and a very narrow host and tissue tropism, has distinguished them enough to be classified in the family Hepadnaviridae. [1] There are two recognized genera:
With the example of human HBV: the particular feature of the HBV structure is the presence of three different forms in the plasma of infected patients:
As with the example of HBV, showing in figure 2, four open reading frames are encoded (ORFs), all ORFs are in the same direction, defining the minus- and plus-strands. And the virus has four known genes, which encode the core protein, the virus polymerase, surface antigens (preS1, preS2, and S) and the X protein. The minus-strand DNA is complete and spans the entire genome, while the plus strand spans only about two-thirds of the genome length and have variable 3' ends. But for the avihepadnaviruses they normally extend plus-strands almost all the way to the modified 5' end. [1] The minus-strand is linked to the viral reverse transcriptase and can encode all the known viral proteins, but the plus-strain cannot encode viral proteins.[ citation needed ]
With the example of HBV: the mechanisms of infecting hepatocytes are still not well understood, but among the studies, it was revealed that the PreS1 domain of the L protein, plays a critical role in the infection, thus exhibiting different host specificity between different hepadnaviruses. Figure show the general process of the HBV infecting host cell: attachment-entry-uncoating-replicate-assembly-release. About the viral entry, several proteins have been identified as possible virus receptors, and studies show that the binding of virion with receptors can be neutralized by anti-PreS1 antibodies.[ citation needed ]
The replication is the unique reverse transcriptase strategy: after uncoating, nucleocapsids are transported to the host cell nucleus, the virion DNA will be converted into covalently closed circular (CCC) DNA, the template for the transcription of the viral RNAs. Then undergoes transcription by the host cell RNA polymerase and the transcript is translated by host cell ribosomes; [1] the high capacity of this replicating part contributes many errors which may help the virus adapt to the host.[ citation needed ]
New virus particles are formed, which acquire lipid from the endoplasmic reticulum of the host cell, and the genome is packaged within these particles, which then bud off from the cell; and some part of the new genome may return to the host cell nucleus for replication more genomes.[ citation needed ]
All the members of family hepadnaviridae share remarkable similarities in the genome organization and the replication strategies, however, it also shows the differences between different species, different genotypes, and different subtypes. The species specificity of them are determined, to some extent, at the level of virus entry, involving the PreS1 part of the large envelop protein L, which could be a reason for their specificity of host range.[ citation needed ]
Viruses in this genus infect mammals, including human, apes, and rodents, with a narrow host range for each virus. The only known natural host for HBV is human, chimpanzees maybe infected experimentally. The orthohepadnaviruses have been divided into four distinct species, with HBV (human hepatitis B virus ), WHV (woodchuck hepatitis virus), GSHV (ground squirrel hepatitis virus ), and WMHBV ( woolly monkey hepatitis B virus ) as the prototypes, based on the host range from a limited number of studies. From the result of molecular studies about the polymerase chain reaction (PCR)-based assays, information about the number and geographic distribution of HBV genotypes and naturally occurring HBV mutants are gained. Eight HBV genotypes, A to H, have been identified in human and three closely related genotypes in apes are found, like gibbon, orangutan, chimpanzee; and he eight HBV genotypes have further diverged into at least 24 subgenotypes. [3] With different analysis, including analysis of recombinants, the new Genotype J was provisionally assigned to be a genetic variant of HBV which is divergent from known human and ape genotypes, it was isolated from a Japanese patient. [4]
Viruses in this genus exclusively infect birds; duck hepatitis B virus (DHBV) and heron hepatitis B virus (HHBV) are the prototypes. Avihepadnaviruses have been detected in various duck species. As the same with the orthohepadnaviruses, avihepadnaviruses have a rather narrow host range, but its common host are ducks and geese, other possible hosts are herons, stocks and crane. [3]
Until 2000, there were more than 5.2 million cases of acute hepatitis B infection, and chronically infects approximately 5% of the human population. [2] HBV is the most common one among those hepatitis viruses. It can cause chronic infection of liver in humans, which has become a global public health problem, since chronic hepatitis can cause cirrhosis or death from liver failure within certain times. And it is the major cause of HCC, contributing about 60-80% of the HCC cases around the world.[ citation needed ]
HBV is transmitted by parenteral contact with body fluids, such as blood and lymph; perinatal exposure of infants to carrier mothers. It is thought that mother-to-child perinatal transmission and the establishment of a lifelong highly infectious carrier state are responsible for the observed high rates of endemicity in high-prevalence regions such as South and East Asia and sub-Saharan Africa. In some cases breast milk of HBsAg positive mothers has been found to be positive for the virus, but there have not been any reports of HBV transmission through breast-feeding, even before the availability of hepatitis B vaccine for infants.[ citation needed ]
Cross-species transmission has not been proven yet, but if this occurs, the chance to eradicate HBV infection by immunization will be diminished due to the difficulty in controlling of natural virus reservoir. And increasing human encroachment on rainforest habitat and fragmentation of declining populations increases the interactions and consequently the risks of disease transmission between wild primates and human populations. Transmission of mammalian hepadnavirus strains between cross-species primate hosts has been found in many cases, recombination of hepadnavirus strains from cross-species primate hosts, further demonstrates that primate associated HBV strains can indeed share hosts in nature, and cross-species transmission of primate-associated HBV strains provides the probability of interspecies recombination. [5]
Since the similarity between human and apes, and common ancestors human and apes shared long time ago, there are possibilities to happen transmission of HBVs among them. The prevalence of HBV infection in the natural primate habitat is unknown. Most data resulted from the studies performed on samples obtained from captive animals, wild-born or captive-born. Human HBV infects only humans and closely related primates, such as chimpanzee, chacma baboon, and to some extent, tree shrew, but does not infect woolly monkeys. HBV isolates have been shown to infect gibbon apes and chimpanzees, but not convincing evidence of an infection of macaques or other members of the Cercopithecidea family. Macaca sylvanus is able to replicate HBV in vivo replication in primary macaque hepatocytes. However, susceptibility of these animals has not been shown.[ citation needed ]
In general, these results imply that nonhuman primate HBV variants may be transmittable to humans. At least they infect representatives of the families Pongidae and Hylobatidae. However, at present it remains to be elucidated if nonhuman primate HBV variants are transmittable to humans and whether they cause disease in humans. And till now, no report of HBV transmission from captive animals to humans currently exists. [3] However the potential for zoonotic disease transmission exists where blood or body fluid exposure is common. Such scenarios could include chronically infected animals kept as family pets, close contact with caretakers, in situations in which chimpanzees are slaughtered and used as bushmeat.
Many cases about avihepadnaviruses transmission between or within species have been studied.
There is no evidence for transmission of avian hepadnavirus between avian and human, but recombination of avihepadnavirus strains between cross-species avian hosts can offer potentials for the transmission between human and bird, considering that many birds are one of the main sources of food for human. [5]
The special replication strategy gives this genus a special character, but also the high replication capacity and high error rate of the viral reverse transcriptase, thus HBVs from this genus have the ability to adapt to the host's environment, and varies from different hepadnaviruses, thus exhibiting species specificities.[ citation needed ]
Pre S1 regions of the L protein, exhibiting different host specificity, if proteolytically being removed from HBV particles results in a loss of infectivity. The S protein therefore is needed, but not sufficient for HBV entry. In contrast to the M protein, the L protein is essential for the viral infectivity. These special proteins plays different role in different viruses, thus determining the different host ranges, if this were strictly true, we would expect that divergence in pre-S would affect cross-species infection, [14] which then can contribute the different transmission of different hepadnaviruses.
A lot of studies have well characterized the horizontal transmission of HBV through parenteral routes and co-infections with different genotypes of HBV have also been reported, including genotypes A and D, genotypes A and G, and genotypes B and C. In Asia, genotypes B and C account for almost all HBV infections. Infection with genotype C may induce more severe liver diseases than infection with genotype B. Recombination between genotypes B and C can occur as the result of co-infection of the two genotypes and recombinant strains may possess an enhanced disease-inducing capacity compared with genotype B. It has also been reported that the predominance of recombinant strains between genotypes B and C might be associated with the development of hepatocellular carcinoma in young carriers in Taiwan. [12]
Though the hepadnaviruses have a very limited host range, with the potential cross-species transmission of hepadnavirus among primates and some families of birds, combined with recombinants, it might change the hepadnavirus host specificity. Interspecies recombination between hepadnaviruses from cross-species hosts would provide a large variation of virus genome, which will change the pathogenicity and transmissibility, and enlarge the host range; the first evidence of potential recombination between chimpanzee HBV and human HBV genome was documented, recombination between human and non-human primate HBV strains, between GiHBV strains from different genera of gibbons, and between birds HBV strains from different avian sub-families were confirmed. All those experiments provided data allowing us to better understand the background, virus hosts, and zoonotic transmission of the non-human primate HBVs. [5]
The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, the average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype.
Hepatitis D is a type of viral hepatitis caused by the hepatitis delta virus (HDV). HDV is one of five known hepatitis viruses: A, B, C, D, and E. HDV is considered to be a satellite because it can propagate only in the presence of the hepatitis B virus (HBV). Transmission of HDV can occur either via simultaneous infection with HBV (coinfection) or superimposed on chronic hepatitis B or hepatitis B carrier state (superinfection).
Simian immunodeficiency virus (SIV) is a species of retrovirus that cause persistent infections in at least 45 species of non-human primates. Based on analysis of strains found in four species of monkeys from Bioko Island, which was isolated from the mainland by rising sea levels about 11,000 years ago, it has been concluded that SIV has been present in monkeys and apes for at least 32,000 years, and probably much longer.
Hepadnaviridae is a family of viruses. Humans, apes, and birds serve as natural hosts. There are currently 18 species in this family, divided among 5 genera. Its best-known member is hepatitis B virus. Diseases associated with this family include: liver infections, such as hepatitis, hepatocellular carcinomas, and cirrhosis. It is the sole accepted family in the order Blubervirales.
The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.
GB virus C (GBV-C), formerly known as hepatitis G virus (HGV) and also known as human pegivirus – HPgV is a virus in the family Flaviviridae and a member of the Pegivirus, is known to infect humans, but is not known to cause human disease. Reportedly, HIV patients coinfected with GBV-C can survive longer than those without GBV-C, but the patients may be different in other ways. Research is active into the virus' effects on the immune system in patients coinfected with GBV-C and HIV.
Simian foamy virus (SFV) is a species of the genus Spumavirus that belongs to the family of Retroviridae. It has been identified in a wide variety of primates, including prosimians, New World and Old World monkeys, as well as apes, and each species has been shown to harbor a unique (species-specific) strain of SFV, including African green monkeys, baboons, macaques, and chimpanzees. As it is related to the more well-known retrovirus human immunodeficiency virus (HIV), its discovery in primates has led to some speculation that HIV may have been spread to the human species in Africa through contact with blood from apes, monkeys, and other primates, most likely through bushmeat-hunting practices.
Murine coronavirus (M-CoV) is a virus in the genus Betacoronavirus that infects mice. Belonging to the subgenus Embecovirus, murine coronavirus strains are enterotropic or polytropic. Enterotropic strains include mouse hepatitis virus (MHV) strains D, Y, RI, and DVIM, whereas polytropic strains, such as JHM and A59, primarily cause hepatitis, enteritis, and encephalitis. Murine coronavirus is an important pathogen in the laboratory mouse and the laboratory rat. It is the most studied coronavirus in animals other than humans, and has been used as an animal disease model for many virological and clinical studies.
Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV) that affects the liver; it is a type of viral hepatitis. It can cause both acute and chronic infection.
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. The study of viruses is known as virology, a subspeciality of microbiology.
Orthohepadnavirus is a genus of viruses, in the family Hepadnaviridae. Humans and other mammals serve as natural hosts. There are 12 species in this genus. Diseases associated with this genus include: hepatitis, hepatocellular carcinoma, and cirrhosis.
Hepatitis B virus (HBV) is a partially double-stranded DNA virus, a species of the genus Orthohepadnavirus and a member of the Hepadnaviridae family of viruses. This virus causes the disease hepatitis B.
cccDNA is a special DNA structure that arises during the propagation of some viruses in the cell nucleus and may remain permanently there. It is a double-stranded DNA that originates in a linear form that is ligated by means of DNA ligase to a covalently closed ring. In most cases, transcription of viral DNA can occur from the circular form only. The cccDNA of viruses is also known as episomal DNA or occasionally as a minichromosome.
Vesivirus is a genus of viruses, in the family Caliciviridae. Swine, sea mammals, and felines serve as natural hosts. There are two species in this genus. Diseases associated with this genus include: respiratory disease, Feline calicivirus (FCV); conjunctivitis, and respiratory disease.
A precore mutant is a variety of hepatitis B virus that does not produce hepatitis B virus e antigen (HBeAg). These mutants are important because infections caused by these viruses are difficult to treat, and can cause infections of prolonged duration and with a higher risk of liver cirrhosis. The mutations are changes in DNA bases from guanine to adenine at base position 1896 (G1896A), and from cytosine to thymine at position 1858 (C1858T) in the precore region of the viral genome.
Aichivirus A formerly Aichi virus (AiV) belongs to the genus Kobuvirus in the family Picornaviridae. Six species are apart of the genus Kobuvirus, Aichivirus A-F. Within Aichivirus A, there are six different types including human Aichi virus, canine kobuvirus, murine kobuvirus, Kathmandu sewage kobuvirus, roller kobuvirus, and feline kobuvirus. Three different genotypes are found in human Aichi virus, represented as genotype A, B, and C.
This glossary of virology is a list of definitions of terms and concepts used in virology, the study of viruses, particularly in the description of viruses and their actions. Related fields include microbiology, molecular biology, and genetics.
Positive-strand RNA viruses are a group of related viruses that have positive-sense, single-stranded genomes made of ribonucleic acid. The positive-sense genome can act as messenger RNA (mRNA) and can be directly translated into viral proteins by the host cell's ribosomes. Positive-strand RNA viruses encode an RNA-dependent RNA polymerase (RdRp) which is used during replication of the genome to synthesize a negative-sense antigenome that is then used as a template to create a new positive-sense viral genome.
Ground squirrel hepatitis virus, abbreviated GSHV, is a partially double-stranded DNA virus that is closely related to human Hepatitis B virus (HBV) and Woodchuck hepatitis virus (WHV). It is a member of the family of viruses Hepadnaviridae and the genus Orthohepadnavirus. Like the other members of its family, GSHV has high degree of species and tissue specificity. It was discovered in Beechey ground squirrels, Spermophilus beecheyi, but also infects Arctic ground squirrels, Spermophilus parryi. Commonalities between GSHV and HBV include morphology, DNA polymerase activity in genome repair, cross-reacting viral antigens, and the resulting persistent infection with viral antigen in the blood (antigenemia). As a result, GSHV is used as an experimental model for HBV.
The woolly monkey hepatitis B virus (WMHBV) is a viral species of the Orthohepadnavirus genus of the Hepadnaviridae family. Its natural host is the woolly monkey (Lagothrix), an inhabitant of South America categorized as a New World primate. WMHBV, like other hepatitis viruses, infects the hepatocytes, or liver cells, of its host organism. It can cause hepatitis, liver necrosis, cirrhosis, and hepatocellular carcinoma. Because nearly all species of Lagothrix are threatened or endangered, researching and developing a vaccine and/or treatment for WMHBV is important for the protection of the whole woolly monkey genus.