Triniscope

Last updated

The Triniscope was an early color television system developed by RCA. It used three separate video tubes with colored phosphors producing the primary colors, combining the images through dichroic mirrors onto a screen for viewing.

Contents

As a consumer system it was enormous, expensive, impractical, and dropped as soon as the shadow mask system was successful. However, the Triniscope idea was used commercially in several niche roles for years, notably as a color replacement for the kinescope, from which it took its name.

The term can also be applied to any projection television system using three tubes, but this use is rare in the literature.

History

Color television

Color television had been studied even before commercial broadcasting became common, but it was only in the late 1940s that the problem was seriously considered. At the time, a number of systems were being proposed that used separate red, green and blue signals (RGB), broadcast in succession. Most systems broadcast entire frames in sequence, with a colored filter (or "gel") that rotated in front of an otherwise conventional black and white television tube. Because they broadcast separate signals for the different colors, all of these systems were incompatible with existing black and white sets. Another problem was that the mechanical filter made them flicker unless very high refresh rates were used. In spite of these problems, the US Federal Communications Commission (FCC) selected a sequential-frame 144 frame/s standard from CBS as their color broadcast in 1950. [1]

RCA worked along different lines entirely, using the luminance-chrominance system. This system did not directly encode or transmit the RGB signals; instead it first combined the RGB signals from the camera into one overall brightness figure, the "luminance". The luminance signal closely matched the existing black and white broadcasts, and would display properly on existing sets. This was a major advantage over the mechanical systems being proposed by other groups. Color information was then separately encoded and folded into the broadcast signal at high-frequency. On a black and white television this extra information would be seen as a slight randomization of the image intensity, but the limited resolution of existing sets made this invisible in practice. On color sets, a decoder would notice the signal, filter it out from the luminance, and then process it to retrieve the color again.

Although RCA's system had enormous benefits over CBS's, it had not been successfully developed because it proved difficult to produce the display tubes. Compared to the CBS system, where the color changed once a frame at 144 times a second, RCA's system changed the color continually across the line, thousands of times a second, far too fast for a mechanical filter like the CBS design. Instead, the system required small dots of colored phosphor to be deposited on the screen, instead of the even coating used in conventional sets or mechanical color systems. These dots were far too small to be accurately hit by an electron gun.

If a single tube could not be built with the required performance, an obvious solution is to use multiple tubes, one for each color. A wide variety of systems attempted to use this concept, differing primarily in the way they re-combined the images for display.

Triniscope

RCA's solution was to use three conventional black and white tubes with filters on the front to produce the three primary colors. The tubes were arranged with the green-filtered tube at the bottom of the chassis, facing up. Above it and to one side was the blue-filtered tube This was aimed at right angles to the green, so light from the two crossed in space between them. At the crossing point, a dichromic mirror was positioned to reflect the blue light up, while allowing the green light to pass through unchanged. Both "beams" were now traveling toward the top of the tube. [2] A third tube and mirror completed the system by adding red to the image. A suitable red phosphor was not available at the time; instead, a red Wratten filter was placed over a tube with bright yellow phosphor, and then neutral filtered to get the proper brightness in relation to the other two tubes. All three signals then shone onto a mirror at the top of the chassis, which reflected the light forward toward the viewer. [2]

There were numerous problems with the arrangement. The first, and most difficult to solve, was that the resulting system was enormous. One example system using three 10-inch kinescope monitors, was 40-inches high, 38-inches wide and 21-inches deep. [2] This was the smallest of the Triniscope models produced with a reasonable display size; others had smaller chassis, but only at the cost of much smaller displays.

The signal was decoded by filtering out the color portion of the signal and sending the left-over luminance signal to all three tubes evenly. The color signal was then used to gate each color tube to the correct brightness levels. This required separate circuits for each tube, and even the most developed example required a total of 44 vacuum tubes in four separate chassis units. The system was expensive, both to build and to keep running. Given the cost and complexity, RCA also built prototype units using a two-color system, orange and cyan. Similar systems had been used to produce low-cost color films as early as the 1920s. [3]

NTSC

During the early color meetings hosted by the FCC, the selection board made it clear they did not consider the Triniscope to be an acceptable solution. They allowed RCA to use the system in order to illustrate the dot-sequential system, but stated that only a system with a single display tube would be selected. [4] In any event, RCA's displays never produced a reasonable image in testing.

As the FCC meetings evolved into the NTSC, other researchers at RCA were hard at work on the competing shadow mask concept. By the time the next set of presentations was ready, shadow mask tubes using one or three guns were available. These did not fare any better in viewing tests, but critically, it was due to the signaling system, not the tubes. By that point, RCA had abandoned further development of the Triniscope. [4]

Further use

Although the shadow mask worked, it had a number of practical drawbacks. Notable among these was the dim images it produced as a side-effect of the mask blocking off most of the power from the electron guns. Development of other solutions to the color problem continued throughout the 1950s and 60s, including commercial development of the Triniscope.

The Triniscope was first used as a color analog of the existing kinescope systems it was originally developed from. NBC and Pathé demonstrated a working system as early as 1954. [5] However, in tests the system proved to be only "resonsable" so development continued in order to improve the quality. [6]

However, during the same period the first video tape systems were being introduced, and the expense of the color printing used in the Triniscope made it an expensive option. Improvements in color film technology improved the system and work on the concept continued into the 1970s. [7]

The Triniscope also saw limited development for consumer television use. One example is the Mitsubishi 6CT-338, which used three 5-inch CRTs arranged behind a faux screen on the front of the display. The image was viewable as a small image centered within the larger faux screen. Using three separate tube resulted in image brightness no shadow mask set could match, but because the image was "behind" the front of the display, the system had a limited display angle. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">Cathode-ray tube</span> Vacuum tube manipulated to display images on a phosphorescent screen

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures, radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

<span class="mw-page-title-main">NTSC</span> Analog television system

The first American standard for analog television broadcast was developed by the National Television System Committee (NTSC) in 1941. In 1961, it was assigned the designation System M.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">S-Video</span> Signal format for standard-definition video

S-Video is an analog video signal format that carries standard-definition video, typically at 525 lines or 625 lines. It encodes video luma and chrominance on two separate channels, achieving higher image quality than composite video which encodes all video information on one channel. It also eliminates several types of visual defects such as dot crawl which commonly occur with composite video. Although it improved over composite video, S-Video has lower color resolution than component video, which is encoded over three channels.

<span class="mw-page-title-main">Color television</span> Television transmission technology

Color television or colour television is a television transmission technology that includes color information for the picture, so the video image can be displayed in color on the television set. It improves on the monochrome or black-and-white television technology, which displays the image in shades of gray (grayscale). Television broadcasting stations and networks in most parts of the world upgraded from black-and-white to color transmission between the 1960s and the 1980s. The invention of color television standards was an important part of the history and technology of television.

<span class="mw-page-title-main">Kinescope</span> Early recording process for live television

Kinescope, shortened to kine, also known as telerecording in Britain, is a recording of a television programme on motion picture film, directly through a lens focused on the screen of a video monitor. The process was pioneered during the 1940s for the preservation, re-broadcasting and sale of television programmes before the introduction of quadruplex videotape, which from 1956 eventually superseded the use of kinescopes for all of these purposes. Kinescopes were the only practical way to preserve live television broadcasts prior to videotape.

<span class="mw-page-title-main">Shadow mask</span> Metal sheet with hundreds of thousands of holes, used in CRTs to correctly align colors

The shadow mask is one of the two technologies used in the manufacture of cathode-ray tube (CRT) televisions and computer monitors which produce clear, focused color images. The other approach is the aperture grille, better known by its trade name, Trinitron. All early color televisions and the majority of CRT computer monitors used shadow mask technology. Both of these technologies are largely obsolete, having been increasingly replaced since the 1990s by the liquid-crystal display (LCD).

<span class="mw-page-title-main">Trinitron</span> Series of CRT televisions and monitors manufactured by Sony from 1968 to 2008

Trinitron was Sony's brand name for its line of aperture-grille-based CRTs used in television sets and computer monitors. One of the first television systems to enter the market since the 1950s. Constant improvement in the basic technology and attention to overall quality allowed Sony to charge a premium for Trinitron devices into the 1990s.

<span class="mw-page-title-main">Component video</span> Video signal that has been split into component channels

Component video is an analog video signal that has been split into two or more component channels. In popular use, it refers to a type of component analog video (CAV) information that is transmitted or stored as three separate signals. Component video can be contrasted with composite video in which all the video information is combined into a single signal that is used in analog television. Like composite, component cables do not carry audio and are often paired with audio cables.

<span class="mw-page-title-main">Screen burn-in</span> Disfigurement of an electronic display

Screen burn-in, image burn-in, ghost image, or shadow image, is a permanent discoloration of areas on an electronic display such as a cathode ray tube (CRT) in an old computer monitor or television set. It is caused by cumulative non-uniform use of the screen.

The penetron, short for penetration tube, is a type of limited-color television used in some military applications. Unlike a conventional color television, the penetron produces a limited color gamut, typically two colors and their combination. Penetrons, and other military-only cathode ray tubes (CRTs), have been replaced by LCDs in modern designs.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

A field-sequential color system (FSC) is a color television system in which the primary color information is transmitted in successive images and which relies on the human vision system to fuse the successive images into a color picture. One field-sequential system was developed by Peter Goldmark for CBS, which was its sole user in commercial broadcasting. It was first demonstrated to the press on September 4, 1940, and first shown to the general public on January 12, 1950. The Federal Communications Commission adopted it on October 11, 1950, as the standard for color television in the United States, but it was later withdrawn.

The Chromatron is a color television cathode ray tube design invented by Nobel prize-winner Ernest Lawrence and developed commercially by Paramount Pictures, Sony, Litton Industries and others. The Chromatron offered brighter images than conventional color television systems using a shadow mask, but a host of development problems kept it from being widely used in spite of years of development. Sony eventually abandoned it in favor of their famous Trinitron system using an aperture grille.

The Geer tube was an early single-tube color television cathode ray tube, developed by Willard Geer. The Geer tube used a pattern of small phosphor-covered three-sided pyramids on the inside of the CRT faceplate to mix separate red, green and blue signals from three electron guns. The Geer tube had a number of disadvantages, and was never used commercially due to the much better images generated by RCA's shadow mask system. Nevertheless, Geer's patent was awarded first, and RCA purchased an option on it in case their own developments didn't pan out.

The beam-index tube is a color television cathode ray tube (CRT) design, using phosphor stripes and active-feedback timing, rather than phosphor dots and a beam-shadowing mask as developed by RCA. Beam indexing offered much brighter pictures than shadow-mask CRTs, reducing power consumption, and as they used a single electron gun rather than three, they were easier to build and required no alignment adjustments.

<span class="mw-page-title-main">Porta-Color</span>

General Electric's Porta-Color was the first "portable" color television introduced in the United States in 1966.

Telechrome was the first all-electronic single-tube color television system. It was invented by well-known Scottish television engineer, John Logie Baird, who had previously made the first public television broadcast, as well as the first color broadcast using a pre-Telechrome system.

The four-tube television camera, intended for color television studio use, was first developed by RCA in the early 1960s. In this camera, in addition to the usual complement of three tubes for the red, green and blue images, a fourth tube was included to provide luminance detail of a scene. With such a camera, a sharp black and white picture was always assured, as it was not necessary to combine signals from the three colour tubes to provide the luminance detail.

References

Notes

  1. Ed Reitan, "CBS Field Sequential Color System" Archived 2010-01-05 at the Wayback Machine , 24 August 1997
  2. 1 2 3 Ed Reitan, "RCA Laboratories Developmental Color Receivers" Archived 2011-05-26 at the Wayback Machine , 18 January 1997
  3. Ed Reitan, "RCA Dot Sequential Color System" Archived 2010-01-07 at the Wayback Machine , 28 August 1997
  4. 1 2 George Harold Brown, "And part of which I was: recollections of a research engineer", Augus Cupar Publishers, 1982, pg. 197
  5. "NCB Ready With 35-MM. Color Kine", Billboard, 1 May 1954, pg. 9
  6. Abramson & Sterling, pg. 67
  7. Abramson & Sterling, pg. 198
  8. "LabGuy's World: Early Television Foundation Convention 2010"

Bibliography