Tripod (foundation)

Last updated
Tripod in Bremerhaven Tripod wind energy Brhv.jpg
Tripod in Bremerhaven

The tripod is a type of foundation for offshore wind turbines. The tripod is generally more expensive than other types of foundation. However, for large turbines and higher water depth, the cost disadvantage might be compensated when durability is also taken into account.

Contents

History

Start of the offshore wind industry

The exploration of offshore wind energy started with the introduction of monopile foundations for wind turbines in a range from 1 up to 3MW in water depth of about 10 to 20m during the 1990s. [1] Germany has been facing water depths up to 40m, when it joined this new field of renewable energy. At the same time the 5MW turbine class appeared. One representative of this new turbine generation was the Multibrid M5000 with a rotor diameter of 116m, later 135m under the labels Areva and Adwen. The first prototype of this machine was erected in Bremerhaven in 2004 onshore. Already in this stage Bremerhaven had supported the development on behalf of BIS Bremerhavener Gesellschaft für Investitionsförderung und Stadtentwicklung mbH.

Development of the tripod foundation

Since the new century, there has been a search for a feasible foundation for the upcoming large turbines and greater water depths, in light of the available geotechnical assessment methods, fabrication processes, pile driving equipment and logistic and installation equipment. One result was the Tripod foundation. The first design was drawn by OWT – Offshore Wind Technology in Leer (Germany) in 2005. The Tripod was integrally designed with the tower from this early beginning. The three-legged structure reaches from the sea bed up to typically 20m above the sea water level, keeping the bolted flange on top safely apart from the crest of the waves. This section allows to be outfitted onshore with all functionalities needed in terms of boat landing, cable guiding and last but not least corrosion protection systems. The central column is designed as an open system allowing an unrestricted water exchange in each tide cycle. This circumstance is beneficial when the corrosion protection system has to be designed for the inner surfaces.

An onshore wind turbine using a tripod foundation. This particular wind turbine is a Multibrid M5000, and so is the non-tripod wind turbine to its left. Behind it is an Enercon turbine, likely an E-82. Tripod Prototype 1b.jpg
An onshore wind turbine using a tripod foundation. This particular wind turbine is a Multibrid M5000, and so is the non-tripod wind turbine to its left. Behind it is an Enercon turbine, likely an E-82.

The Tripod is fixed with midsized pin piles at the sea bed. The piles might be pre piled or post piled. A suction bucket foundation was designed as well. The first tower section, called S3, is foreseen to be mounted offshore on top of the Tripod with a bolted flange connection. This section contains the outer service platform and the entry door. This section is independently accessible for electrical equipment and cold commissioning procedures. Additionally it provides simply height, what can be saved on Tripod side. The height of a Tripod amounts already about 60m for 40m water depth.

In 2006 a Tripod onshore demonstrator was designed by OWT for Multibrid GmbH, manufactured and erected in Bremerhaven, Germany, by WeserWind GmbH Offshore Construction Georgsmarienhütte. This was the beginning of a long lasting collaboration between the turbine developer and manufacturer Multibrid, the foundation designer OWT and the fabricator WeserWind. Meanwhile, the design covers the demands of an offshore turbine foundation to sufficient extent, the fabrication was even challenging regarding size and shape of the structure. That time WeserWind was supported in terms of fabrication and assembly by its sister company IAG Industrieanlagenbau Georgsmarienhütte GmbH, a member of the Georgsmarienhütte group as well. The first operation of the turbine was accompanied by the research project IMO-Wind. [2] The first steps in condition monitoring have been undertaken including the determination of stress curves, the so-called "Hot spot" Survey, in order to enable the comparison with calculation models.

Horizontal assembly at Aker Yards in 2008 Tripod 2b.jpg
Horizontal assembly at Aker Yards in 2008
Sail out with Taklift 4 to Alpha Ventus 2009 Tripod 3b.jpg
Sail out with Taklift 4 to Alpha Ventus 2009

Large scale deployments

In 2008 Tripods were built as a substructure for six Multibrid M5000 offshore wind turbines in the Alpha Ventus project. Alpha Ventus was planned as a first test field for the exploration of offshore wind energy in German waters. The project organisation has been Deutsche Offshore-Testfeld und Infrastruktur GmbH & Co. KG, DOTI. It was founded in 2006 by EWE AG (47,5%), E.ON Climate & Renewables Central Europe GmbH and Vattenfall Europe Windkraft GmbH (each 26,25%) assisted by Stiftung Offshore Windenergie. The German Federal Ministry of Environment BMU supported a number of research projects, which were summarized in the RAVE initiative (Research at Alpha Ventus). A broad basis of experience and knowledge was gained for the construction, commissioning and operation for future offshore wind farms. The Tripods were fabricated by Aker Kvaerner in Verdal, Norway. A horizontal assembly of the Tripods was realized in accordance to the local fabrication experience of the yard, coming from large oil and gas jacket fabrication, with subsequent upending and of course upright sailing from Norway to the offshore terminal in Eemshaven. The transportation of the Tripods to the location was done by Taklift 4 from Boskalis one by one.

The year 2010 marked the next milestone in rolling out the M5000 turbine with the Tripod foundation. The two projects Borkum West II and Global Tech I decided to erect their farms using this technology platform. 40 Tripods were ordered by each project in first instance nearly at the same time. Anticipating this demand WeserWind has developed a serial production approach for Tripods in the years before, together with Dr. Möller GmbH / IMS Nord, [3] Bremerhaven. The key parameters of this approach are the upright assembly concept, the setup of an assembly line with up to nine work stations, the transportation of the growing structures on behalf of heavy load rail carriers along the assembly line and the integrated load out operation to a tailor-made pontoon. Based on this concept Georgsmarienhütte released the investment program building this assembly shop with two parallel lines at Lunedeich, Bremerhaven. The building was operational in the beginning of 2011 and in June the first Borkum-West II-Tripod was completed.

Serial production in upright position at WeserWind Tripod 4b.jpg
Serial production in upright position at WeserWind
Three Tripods on board of Stanislaw Yudin ready for sail out Tripod 6b.jpg
Three Tripods on board of Stanislaw Yudin ready for sail out

In December 2011 the pontoon was baptised and the offshore terminal ABC-Peninsula was commissioned by BLG Logistics Solutions GmbH & Co. KG after essential upgrading. Finally 100 Tripods have been built at this site in the years from 2011 to 2013. The cycle time for the whole plant was reached with down to five calendar days per structure. The load out cycle was achieved to four hours. Also SIAG Emden and the consortium Iemants N.V. with Eiffage Construction Métallique S.A.S. in Vlissingen produced in total 20 Tripods in that time in upright position. The offshore transportation technology has been developed significantly since Alpha Ventus. The Offshore Construction Jack Up “Innovation” by HGO InfraSea Solutions GmbH & Co. KG was commissioned in 2012 and did her first job for Global Tech 1 carrying three Tripods and pile sets per sail. The crane ships “Stanislaw Yudin” and “Oleg Strassnow” by SHL Seaway Heavy Lifting were in operation for Borkum West II.

Specific technical characteristics

Suitability and use conditions

The peculiarity of the Tripod is the combination of the above-water structure like a Monopile solution with small exposed surface, robust performance in risk scenarios and easy transition to the tower part with the supporting effect and performance of a lattice structure. Hot spots are avoided in the aggressive environment of splash zone by design allowing a free corrosion fatigue assessment.

In the wind energy, the coordination of the dynamics of the structure, characterized by the frequencies it mainly swings, is of special importance due to the excitation by the turbine rotor. The Tripod behaviour is between the Monopile, which tends to be softer and the Jacket, which in turn is more rigid.

The application area in terms of water depth was initially predicted to at least 25 meters water depth up to 50m. [4] The impressively growing Monopile technology within the last years moved their field of application far to 40m nowadays. Therefore, the Tripod disappeared from the scene. Beside the higher fabrication effort for Tripods, transport and installation efforts might become even more comparable the more the structures grow. Finally the dedicated suitability of the Tripod to corrosion protection systems will remain a significant difference to the Monopile. The performance of the structures over the life time and due diligence assessments of the assets in later life cycle stages might give reason for reconciliation of the arguments.

Comparable to other lattice structures like Jackets, the Tripod is fixed with piles in the sea bed. The number of three legs results in sufficient stability in the unpiled or ungrouted situation what comes back with a reliable weather window for installation. The design parameters for the piles can be independently chosen from the Tripod itself and reflect the geotechnical needs explicitly. There is no need to apply scour protection.

The connection to the pile is usually achieved using a grouted connection. This is a technique where special concrete is poured in the joint gap between pile and pile sleeve. Due to the resulting composite effect the loads are transferred from the sleeve to the pile, and thus into the ground. A submerged grouting process requires high competence in design, planning and execution of the processes. The stable moderate temperature under water supports the temperature sensitive grout curing process.

Structural backgrounds

The supporting action is based on the deflection of the bending moment of the tower to the piles, which are then essentially only pulled or pushed. This requires a combination of upper and lower legs which build up the leverage. Alternatively, a suction bucket can be used instead of the pile. In comparison, the monopile distributes its loads by laterally stabilizing into the ground.

Tubular nodes are the characteristic design element in lattice structures, where tubes intersect each other. It is preferred that incoming tubes, the stubs, remain in certain ratio of the diameters (0.8) to the continuous tube, the chord, to achieve efficient load bearing effects. This effect determines to the final dimensional ratios.

The plate thicknesses within offshore foundations are well adapted to the local load situations. A balanced material utilisation can be achieved by design because the dimension of an offshore foundation is large compared to the dimension of hot rolled plates. Tripods and Monopiles are shell structures. Their wall thickness is relatively small compared to the diameter. Therefore, they have to be proven in terms of shell buckling. The tower, central tube and legs are assembled of cylindrical or conical sections, cans, with an individual length of 2 to 4m. The wall thicknesses are in the range of 40 to 60mm in the central column, a few cans in high-stress areas up to 90mm. The wall thicknesses of the conical legs range from 20 to 30mm.

The lifetime is a central requirement to the design. In the classic oil and gas industry offshore wave loads have already been taken into account. The operation of wind turbine generators causes additionally high dynamic operating loads. This was impressively observed with the Growian project, what was a two bladed 3MW onshore turbine, what failed in 1983 for this reason.

Calculation methods

FEM methods are mainly used for the assessments. Only these more extensive tools allow to reflect the stress curves in detail and to provide accuracy as it is required for the design. The calculation times have been considerably reduced by scripted modelling and increasing computing speeds, which increased the iterations speeds and thus improved the optimization results. [5]

Summary and outlook

The Tripod foundation for offshore wind turbines represents a remarkable contribution to the beginning of the industrial utilisation of offshore wind energy in German waters. It was born within a creative nut shell of German offshore wind pioneers and it expanded its potential gaining further partners to a large multidisciplinary team realising the vision. The fact, that 126 turbines founded on top of Tripods are nowadays operational, is the result of a long lasting reliable collaboration of a number of stakeholders.

A desk top study has been performed in 2014 assessing the feasibility of the foundation concept to the next turbine generation with 8MW and rotor diameter beyond 160m. It was essential to demonstrate the limited weight increase carrying the even higher loads and thus approving all the existing fabrication and installation processes from the projects done before.

Today the grown knowledge in offshore engineering from the Tripod decade is a kind of immaterial asset to be put into new projects using Monopile, Jacket or why not Tripod concepts, exploring the recent state of the art for lowering the cost of energy.

Related Research Articles

<span class="mw-page-title-main">Foundation (engineering)</span> Lowest and supporting layer of a structure

In engineering, a foundation is the element of a structure which connects it to the ground, transferring loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics in the design of foundation elements of structures.

<span class="mw-page-title-main">Enercon</span>

Enercon GmbH is a wind turbine manufacturer based in Aurich, Lower Saxony, Germany. It has been the market leader in Germany since the mid-1990s. Enercon has production facilities in Germany, Brazil, India, Canada, Turkey and Portugal. In June 2010, Enercon announced that they would be setting up Irish headquarters in Tralee.

<span class="mw-page-title-main">Alte Weser Lighthouse</span> Lighthouse in Lower Saxony, Germany

The Alte Weser Lighthouse is located offshore from the estuary mouth of the river Weser in the German Bight, southern North Sea. It was built on sand between 1961 and 1964. The lighthouse took over duties and replaced the historical Roter Sand Lighthouse on 1 September 1964. The latter had been built from 1883 to 1885.

<span class="mw-page-title-main">Deep foundation</span> Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

<span class="mw-page-title-main">Sheringham Shoal Offshore Wind Farm</span>

Sheringham Shoal Offshore Wind Farm is a Round 2 wind farm in North Sea off the coast of Norfolk. A lease for use of the sea bed was obtained in 2004 by Scira Offshore Energy, the development gained offshore planning consent in 2008, and was constructed 2009–2011, being officially opened in 2012.

Specialized wind energy software applications aid in the development and operation of wind farms.

<span class="mw-page-title-main">Floating wind turbine</span> Type of wind turbine

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

<span class="mw-page-title-main">Barrow Offshore Wind Farm</span> Offshore wind farm in the East Irish Sea near Barrow-in-Furness, Cumbria, England

The Barrow Offshore Wind Farm is a 30 turbine 90MW capacity offshore wind farm in the East Irish Sea approximately 7 kilometres (4.3 mi) south west of Walney Island, near Barrow-in-Furness, Cumbria, England.

<span class="mw-page-title-main">Lynn and Inner Dowsing Wind Farms</span>

The Lynn and Inner Dowsing wind farms are a pair of round 1 wind farms located in the North Sea, in the shallow waters at the entrance to The Wash off the coast of Lincolnshire, England. The wind farms were developed as a single unit after planning consent was given in 2003. Construction work began in 2006 and was completed in 2009.

<span class="mw-page-title-main">Offshore wind power</span> Wind turbines in marine locations for electricity production

Offshore wind power or offshore wind energy is the generation of electricity through wind farms in bodies of water, usually at sea. There are higher wind speeds offshore than on land, so offshore farms generate more electricity per amount of capacity installed. Offshore wind farms are also less controversial than those on land, as they have less impact on people and the landscape.

<span class="mw-page-title-main">Alpha Ventus Offshore Wind Farm</span>

Alpha Ventus Offshore Wind Park is Germany's first offshore wind farm. It is situated in the North Sea 45 kilometres (28 mi) north of the island of Borkum.

<span class="mw-page-title-main">Humber Gateway Wind Farm</span> Wind farm in the UK

Humber Gateway Wind Farm is an offshore wind farm 8 kilometres (5 mi) east of Spurn Point off the coast of North East Lincolnshire, in the North Sea, England; the wind farm is located in water depths around 15 metres (49 ft) and covers an area of approximately 25 square kilometres (9.7 sq mi). The wind farm became operational in June 2015.

<span class="mw-page-title-main">Westermost Rough Wind Farm</span>

Westermost Rough Wind Farm is an offshore wind farm 8 kilometres (5 mi) north east of Withernsea off the Holderness coast, in the North Sea, England. The farm covers an area of approximately 35 km2 (14 sq mi) with a generation capacity of approximately 210 MW. It became operational in May 2015.

<span class="mw-page-title-main">Walney Wind Farm</span> Offshore wind farm off the coast of Cumbria, England

Walney Wind Farms are a group of offshore wind farms 9 miles (14 km) west of Walney Island off the coast of Cumbria, in the Irish Sea, England. The group, operated by Ørsted, consists of Walney Phase 1, Phase 2 and the Walney Extension. The extension has a capacity of 659 MW making it the world's second largest offshore wind farm.

<span class="mw-page-title-main">Suction caisson</span> Open bottomed tube anchor embedded and released by pressure differential

Suction caissons are a form of fixed platform anchor in the form of an open bottomed tube embedded in the sediment and sealed at the top while in use so that lifting forces generate a pressure differential that holds the caisson down. They have a number of advantages over conventional offshore foundations, mainly being quicker to install than deep foundation piles and being easier to remove during decommissioning. Suction caissons are now used extensively worldwide for anchoring large offshore installations, like oil platforms, offshore drillings and accommodation platforms to the seafloor at great depths. In recent years, suction caissons have also seen usage for offshore wind turbines in shallower waters.

Adwen GmbH is an offshore wind service company headquartered in Bremerhaven, Germany. It is a wholly owned subsidiary of Spanish-German company Siemens Gamesa. Previously the company designed, assembled, and installed 5-Megawatt wind turbines for offshore wind farms. It also designed and manufactured rotor blades through its subsidiary Adwen Blades GmbH, headquartered in Stade, Germany.

Hornsea Wind Farm is a Round 3 wind farm which began construction in 2018. Sited in the North Sea 120 km (75 mi) off the east coast of England, the eventual wind farm group is planned to have a total capacity of up to 6 gigawatt (GW).

The DeepCwind Consortium is a national consortium of universities, nonprofits, utilities, and industry leaders. The mission of the consortium is to establish the State of Maine as a national leader in floating offshore wind technology. Much of the consortium's work and resulting research has been funded by the U.S. Department of Energy, the National Science Foundations, and others.

<span class="mw-page-title-main">VolturnUS</span>

The VolturnUS is a floating concrete structure that supports a wind turbine, designed by University of Maine Advanced Structures and Composites Center and deployed by DeepCwind Consortium in 2013. The VolturnUS can support wind turbines in water depths of 150 ft (46 m) or more. The DeepCwind Consortium and its partners deployed a 1:8 scale VolturnUS in 2013. Efforts are now underway by Maine Aqua Ventus 1, GP, LLC, to deploy to full-scale VolturnUS structures off the coast of Monhegan Island, Maine, in the UMaine Deepwater Offshore Wind Test Site. This demonstration project, known as New England Aqua Ventus I, is planned to deploy two 6 MW wind turbines by 2020.

References

  1. "Fundaments and foundation structures". offshore-windenergie.net. Archived from the original on October 2, 2014.{{cite web}}: CS1 maint: unfit URL (link)
  2. Fritzen, Claus-Peter, Dr.-Ing. "Integrated Monitoring and Evaluation System for Off-Shore Wind Energy Plants". Universität Siegen.
  3. "IMS Nord – Reference". www.ims-nord.de.
  4. "Mit drei Beinen auf hoher See". deutschlandfunk.de.
  5. "Tripods article". Archived from the original on May 4, 2016. Retrieved July 3, 2016.