Tris(glycinato)cobalt(III)

Last updated
Tris(glycinato)cobalt(III)
Fac&merCo(gly)3.svg
Names
Other names
cobalt(III) glycinate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/3C2H5NO2.Co/c3*3-1-2(4)5;/h3*1,3H2,(H,4,5);
    Key: WZUSLISJDHJYHZ-UHFFFAOYSA-N
  • C(C(=O)O)N.C(C(=O)O)N.C(C(=O)O)N.[Co]
Properties
Appearanceviolet or reddish solids
0.199 g/L (red isomer, 25 °C), 9.33 g/L (violet, 25 °C) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tris(glycinato)cobalt(III) describes coordination complexes with the formula Co(H2NCH2CO2)3. Several isomers exist of these octahedral complexes formed between low-spin d6 Co(III) and the conjugate base of the amino acid glycine.

Contents

Structures

Solid state structure of mer-Co(glycinate)3 based on X-ray crystallography. SEZMEQ.png
Solid state structure of mer-Co(glycinate)3 based on X-ray crystallography.

Both a meridional isomer and a facial isomer are known. In the former the Co-O bonds share a plane, and in the facial isomer they do not. Each of these two isomers exists also as pairs of stereoisomers, termed Δ and Λ. This set of compounds are prototypes of many tris(aminocarboxylate) complexes, with the notable distinction that the Co(III) derivatives do not isomerize readily and can thus be separated.

The violet isomer is obtained anhydrous, whereas the red derivative is the monohydrate. [1] X-ray crystallographic characterization of the mer isomer demonstrates the existence of a dihydrate, however. [2]

Synthesis

The reaction of glycine with sodium tris(carbonato)cobalt(III) produces both the violet meridional and red-pink facial isomers in approximately equal amounts. The compounds are separated by fractional crystallization. [1] These complexes have been characterized by X-ray crystallography. [3]

The isomeric forms of tris(glycinato)cobalt(III) are poorly soluble in water. The solubility increases considerably in acidic solution.

Related Research Articles

<span class="mw-page-title-main">Nickel(II) chloride</span> Chemical compound

Nickel(II) chloride (or just nickel chloride) is the chemical compound NiCl2. The anhydrous salt is yellow, but the more familiar hydrate NiCl2·6H2O is green. Nickel(II) chloride, in various forms, is the most important source of nickel for chemical synthesis. The nickel chlorides are deliquescent, absorbing moisture from the air to form a solution. Nickel salts have been shown to be carcinogenic to the lungs and nasal passages in cases of long-term inhalation exposure.

<span class="mw-page-title-main">Hexaamminecobalt(III) chloride</span> Chemical compound

Hexaamminecobalt(III) chloride is the chemical compound with the formula [Co(NH3)6]Cl3. It is the chloride salt of the coordination complex [Co(NH3)6]3+, which is considered an archetypal "Werner complex", named after the pioneer of coordination chemistry, Alfred Werner. The cation itself is a metal ammine complex with six ammonia ligands attached to the cobalt(III) ion.

<span class="mw-page-title-main">Tetraphenylphosphonium chloride</span> Chemical compound

Tetraphenylphosphonium chloride is the chemical compound with the formula [(C6H5)4P]Cl, abbreviated Ph4PCl or PPh4Cl or [PPh4]Cl, where Ph stands for phenyl. Tetraphenylphosphonium and especially tetraphenylarsonium salts were formerly of interest in gravimetric analysis of perchlorate and related oxyanions. This colourless salt is used to generate lipophilic salts from inorganic and organometallic anions. Thus, [Ph4P]+ is useful as a phase-transfer catalyst, again because it allows inorganic anions to dissolve in organic solvents.

<span class="mw-page-title-main">Cobalt(II) sulfate</span> Inorganic compound

Cobalt(II) sulfate is any of the inorganic compounds with the formula CoSO4(H2O)x. Usually cobalt sulfate refers to the hexa- or heptahydrates CoSO4.6H2O or CoSO4.7H2O, respectively. The heptahydrate is a red solid that is soluble in water and methanol. Since cobalt(II) has an odd number of electrons, its salts are paramagnetic.

<span class="mw-page-title-main">Cobalt(II) bromide</span> Chemical compound

Cobalt(II) bromide (CoBr2) is an inorganic compound. In its anhydrous form, it is a green solid that is soluble in water, used primarily as a catalyst in some processes.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

<span class="mw-page-title-main">Methylidynetricobaltnonacarbonyl</span> Chemical compound

Methylidynetricobaltnonacarbonyl is the organocobalt compound with the formula HCCo3(CO)9. It is a metal carbonyl cluster that contains the methylidyne ligand. The compound has C3v point group symmetry. It is a purple, air-stable solid that is soluble in some organic solvents, but not in water.

<span class="mw-page-title-main">Caesium oxalate</span> Chemical compound

Caesium oxalate, or dicesium oxalate, or cesium oxalate is a chemical compound with the chemical formula Cs2C2O4. It is a cesium salt of oxalic acid. It consists of cesium cations Cs+ and oxalate anions C2O2−4.

The nickel organic acid salts are organic acid salts of nickel. In many of these the ionised organic acid acts as a ligand.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

<span class="mw-page-title-main">Copper(II) glycinate</span> Chemical compound

Copper(II) glycinate (IUPAC suggested name: bis(glycinato)copper(II)) refers to the coordination complex of copper(II) with two equivalents of glycinate, with the formula [Cu(glycinate)2(H2O)x] where x = 1 (monohydrate) or 0 (anhydrous form). The complex was first reported in 1841, and its chemistry has been revisited many times, particularly in relation to the isomerisation reaction between the cis and trans forms which was first reported in 1890.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

<span class="mw-page-title-main">Manganese lactate</span> Chemical compound

Manganese lactate is an organic chemical compound, a salt of manganese and lactic acid with the formula Mn(C3H5O3)2. The compound forms light pink crystals, soluble in water, forming crystalline hydrates.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

<span class="mw-page-title-main">Sodium tris(carbonato)cobalt(III)</span> Chemical compound

Sodium tris(carbonato)cobalt(III) is the inorganic compound with the formula Na3Co(CO3)3•3H2O. The salt contains an olive-green metastable cobalt(III) coordination complex. The salt, a homoleptic metal carbonato complex, is sometimes referred to as the “Field-Durrant precursor” and is prepared by the “Field-Durrant synthesis”. It is used in the synthesis of other cobalt(III) complexes. Otherwise cobalt(III) complexes are generated from cobalt(II) precursors, a process that requires an oxidant.

<span class="mw-page-title-main">Samarium(III) acetylacetonate</span> Chemical compound

Samarium acetylacetonate is a coordination compound with the formula Sm(C5H7O2)3. This anhydrous acetylacetonate complex is widely discussed but unlikely to exist per se. The 8-coordinated dihydrate Sm(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography. Upon attempted dehydration by heating under vacuum, other hydrated lanthanide tris(acetylacetonate) complexes decompose to give oxo-clusters.

References

  1. 1 2 3 Kauffman, George B.; Karbassi, Mohammad; Kyuno, Eishin (1989). Tris(glycinato)cobalt(III). Inorganic Syntheses. Vol. 25. pp. 135–139. doi:10.1002/9780470132562.ch32. ISBN   978-0-470-13256-2.
  2. Dewan, J. C. (1988). "Structure of Tris(glycinato)cobalt(III) Dihydrate". Acta Crystallographica Section C Crystal Structure Communications. 44 (12): 2199–2201. Bibcode:1988AcCrC..44.2199D. doi:10.1107/S0108270188009126.
  3. Yu, K.-Q.; Sun, Y.-X.; Zhang, R.; Zhang, N.-W.; Che, H.-W. (2007). "Tris(glycinato-κ2N,O)cobalt(III)". Acta Crystallogr. E63: m740–m742. doi:10.1107/S1600536807005636.