Tverberg's theorem

Last updated

A Tverberg partition of the vertices of a regular heptagon into three subsets with intersecting convex hulls. Tverberg heptagon.svg
A Tverberg partition of the vertices of a regular heptagon into three subsets with intersecting convex hulls.

In discrete geometry, Tverberg's theorem, first stated by Helge Tverberg in 1966, [1] is the result that sufficiently many points in d-dimensional Euclidean space can be partitioned into subsets with intersecting convex hulls. Specifically, for any positive integers d, r and any set of

Contents

points there exists a partition of the given points into r subsets whose convex hulls all have a common point; in other words, there exists a point x (not necessarily one of the given points) such that x belongs to the convex hull of all of the subsets. The partition resulting from this theorem is known as a Tverberg partition.

The special case r = 2 was proved earlier by Radon, and it is known as Radon's theorem.

Examples

The case d = 1 states that any 2r−1 points on the real line can be partitioned into r subsets with intersecting convex hulls. Indeed, if the points are x1 < x2 < ... < x2r < x2r-1, then the partition into Ai = {xi, x2r-i} for i in 1,...,r satisfies this condition (and it is unique).

For r = 2, Tverberg's theorem states that any d + 2 points may be partitioned into two subsets with intersecting convex hulls. This is known as Radon's theorem. In this case, for points in general position, the partition is unique.

The case r = 3 and d = 2 states that any seven points in the plane may be partitioned into three subsets with intersecting convex hulls. The illustration shows an example in which the seven points are the vertices of a regular heptagon. As the example shows, there may be many different Tverberg partitions of the same set of points; these seven points may be partitioned in seven different ways that differ by rotations of each other.

Topological Tverberg Theorem

An equivalent formulation of Tverberg's theorem is:

Let d, r be positive integers, and let N := (d+1)(r-1). If ƒ is any affine function from an N-dimensional simplex ΔN to R d, then there are r pairwise-disjoint faces of ΔN whose images under ƒ intersect. That is: there exist faces F1,...,Fr of ΔN such that and .

They are equivalent because any affine function on a simplex is uniquely determined by the images of its vertices. Formally, let ƒ be an affine function from ΔN to R d. Let be the vertices of ΔN, and let be their images under ƒ. By the original formulation, the can be partitioned into r disjoint subsets, e.g. ((xi)i in Aj)j in [r] with overlapping convex hull. Because f is affine, the convex hull of (xi)i in Aj is the image of the face spanned by the vertices (vi)i in Aj for all j in [r]. These faces are pairwise-disjoint, and their images under f intersect - as claimed by the new formulation. The topological Tverberg theorem generalizes this formluation. It allows f to be any continuous function - not necessarily affine. But, currently it is proved only for the case where r is a prime power:

Let d be a positive integer, and let r be a power of a prime number. Let N := (d+1)(r-1). If ƒ is any continuous function from an N-dimensional simplex ΔN to R d, then there are r pairwise-disjoint faces of ΔN whose images under ƒ intersect. That is: there exist faces F1,...,Fr of ΔN such that and .

Proofs

The topological Tverberg theorem was proved for prime by Barany, Shlosman and Szucs. [2] Matousek [3] presents a proof using deleted joins.

The theorem was proved for a prime-power by Ozaydin, [4] and later by Volovikov [5] and Sarkaria. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Connected space</span> Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Convex hull</span> Smallest convex set containing a given set

In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

<span class="mw-page-title-main">Extreme point</span> Point not between two other points

In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of

<span class="mw-page-title-main">Minkowski addition</span> Sums vector sets A and B by adding each vector in A to each vector in B

In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B:

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth.

Carathéodory's theorem is a theorem in convex geometry. It states that if a point lies in the convex hull of a set , then lies in some -dimensional simplex with vertices in . Equivalently, can be written as the convex combination of at most points in . Additionally, can be written as the convex combination of at most extremal points in , as non-extremal points can be removed from without changing the membership of in the convex hull.

<span class="mw-page-title-main">Radon's theorem</span> Says d+2 points in d dimensions can be partitioned into two subsets whose convex hulls intersect

In geometry, Radon's theorem on convex sets, published by Johann Radon in 1921, states that:

Any set of d + 2 points in Rd can be partitioned into two sets whose convex hulls intersect.

<span class="mw-page-title-main">Helly's theorem</span> Theorem about the intersections of d-dimensional convex sets

Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913, but not published by him until 1923, by which time alternative proofs by Radon (1921) and König (1922) had already appeared. Helly's theorem gave rise to the notion of a Helly family.

<span class="mw-page-title-main">Convex polytope</span> Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

<span class="mw-page-title-main">Join (topology)</span>

In topology, a field of mathematics, the join of two topological spaces and , often denoted by or , is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in to every point in . The join of a space with itself is denoted by . The join is defined in slightly different ways in different contexts

<span class="mw-page-title-main">Krein–Milman theorem</span> On when a space equals the closed convex hull of its extreme points

In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs).

In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics.

<span class="mw-page-title-main">Hyperplane separation theorem</span> On the existence of hyperplanes separating disjoint convex sets

In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form

In linear algebra and matroid theory, Rota's basis conjecture is an unproven conjecture concerning rearrangements of bases, named after Gian-Carlo Rota. It states that, if X is either a vector space of dimension n or more generally a matroid of rank n, with n disjoint bases Bi, then it is possible to arrange the elements of these bases into an n × n matrix in such a way that the rows of the matrix are exactly the given bases and the columns of the matrix are also bases. That is, it should be possible to find a second set of n disjoint bases Ci, each of which consists of one element from each of the bases Bi.

A geometric separator is a line that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset is small.

References

  1. Tverberg, H. (1966), "A generalization of Radon's theorem" (PDF), Journal of the London Mathematical Society , 41: 123–128, doi:10.1112/jlms/s1-41.1.123
  2. Bárány, I.; Shlosman, S. B.; Szücs, A. (February 1981), "On a Topological Generalization of a Theorem of Tverberg", Journal of the London Mathematical Society, s2-23 (1): 158–164, doi:10.1112/jlms/s2-23.1.158
  3. Matoušek, Jiří (2007), Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.), Berlin-Heidelberg: Springer-Verlag, ISBN   978-3-540-00362-5, Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3, pp. 162-163
  4. Ozaydin, Murad (1987), Equivariant Maps for the Symmetric Group (preprint), University of Wisconsin-Madison, hdl:1793/63829
  5. Volovikov, A. Yu. (March 1996), "On a topological generalization of the Tverberg theorem", Mathematical Notes, 59 (3): 324–326, doi:10.1007/BF02308547, ISSN   1573-8876, S2CID   122078369
  6. Sarkaria, K. S. (November 2000), "Tverberg partitions and Borsuk–Ulam theorems", Pacific Journal of Mathematics, 196 (1): 231–241, doi: 10.2140/pjm.2000.196.231 , ISSN   0030-8730

Further reading