Twist (mathematics)

Last updated

In differential geometry, the twist of a ribbon is its rate of axial rotation. Let a ribbon be composed of a space curve, , where is the arc length of , and the a unit normal vector, perpendicular at each point to . Since the ribbon has edges and , the twist (or total twist number) measures the average winding of the edge curve around and along the axial curve . According to Love (1944) twist is defined by

where is the unit tangent vector to . The total twist number can be decomposed (Moffatt & Ricca 1992) into normalized total torsion and intrinsic twist as

where is the torsion of the space curve , and denotes the total rotation angle of along . Neither nor are independent of the ribbon field . Instead, only the normalized torsion is an invariant of the curve (Banchoff & White 1975).

When the ribbon is deformed so as to pass through an inflectional state (i.e. has a point of inflection), the torsion becomes singular. The total torsion jumps by and the total angle simultaneously makes an equal and opposite jump of (Moffatt & Ricca 1992) and remains continuous. This behavior has many important consequences for energy considerations in many fields of science (Ricca 1997, 2005; Goriely 2006).

Together with the writhe of , twist is a geometric quantity that plays an important role in the application of the Călugăreanu–White–Fuller formula in topological fluid dynamics (for its close relation to kinetic and magnetic helicity of a vector field), physical knot theory, and structural complexity analysis.

See also

Related Research Articles

<span class="mw-page-title-main">Spectral density</span> Relative importance of certain frequencies in a composite signal

In signal processing, the power spectrum of a continuous time signal describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of any sort of signal as analyzed in terms of its frequency content, is called its spectrum.

<span class="mw-page-title-main">Weierstrass elliptic function</span> Class of mathematical functions

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

<span class="mw-page-title-main">Torsion spring</span> Type of spring

A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:

<span class="mw-page-title-main">Frenet–Serret formulas</span> Formulas in differential geometry

In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space , or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called tangent, normal, and binormal unit vectors in terms of each other. The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret, in 1851. Vector notation and linear algebra currently used to write these formulas were not yet available at the time of their discovery.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

In knot theory, there are several competing notions of the quantity writhe, or . In one sense, it is purely a property of an oriented link diagram and assumes integer values. In another sense, it is a quantity that describes the amount of "coiling" of a mathematical knot in three-dimensional space and assumes real numbers as values. In both cases, writhe is a geometric quantity, meaning that while deforming a curve in such a way that does not change its topology, one may still change its writhe.

In fluid dynamics, helicity is, under appropriate conditions, an invariant of the Euler equations of fluid flow, having a topological interpretation as a measure of linkage and/or knottedness of vortex lines in the flow. This was first proved by Jean-Jacques Moreau in 1961 and Moffatt derived it in 1969 without the knowledge of Moreau's paper. This helicity invariant is an extension of Woltjer's theorem for magnetic helicity.

In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.

<span class="mw-page-title-main">Torsion (mechanics)</span> Twisting of an object due to an applied torque

In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. Torsion is expressed in either the pascal (Pa), an SI unit for newtons per square metre, or in pounds per square inch (psi) while torque is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In sections perpendicular to the torque axis, the resultant shear stress in this section is perpendicular to the radius.

In the differential geometry of curves in three dimensions, the torsion of a curve measures how sharply it is twisting out of the osculating plane. Taken together, the curvature and the torsion of a space curve are analogous to the curvature of a plane curve. For example, they are coefficients in the system of differential equations for the Frenet frame given by the Frenet–Serret formulas.

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not due to arbitrary spin or rotation of the frame. It was discovered by Fermi in 1921 and rediscovered by Walker in 1932.

<span class="mw-page-title-main">Torsion tensor</span> Manner of characterizing a twist or screw of a moving frame around a curve

In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is bilinear map of two input vectors , that produces an output vector representing the displacement within a tangent space when the tangent space is developed along an infinitesimal parallelogram whose sides are . It is skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a screw moves in opposite ways when it is twisted in two directions.

In mathematics, the Melnikov method is a tool to identify the existence of chaos in a class of dynamical systems under periodic perturbation.

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz and Georges de Rham . Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

A Modified Wigner distribution function is a variation of the Wigner distribution function (WD) with reduced or removed cross-terms.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

In the field of time–frequency analysis, several signal formulations are used to represent the signal in a joint time–frequency domain.

In differential geometry, a ribbon is the combination of a smooth space curve and its corresponding normal vector. More formally, a ribbon denoted by includes a curve given by a three-dimensional vector , depending continuously on the curve arc-length , and a unit vector perpendicular to at each point. Ribbons have seen particular application as regards DNA.

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells. It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.

<span class="mw-page-title-main">Gheorghe Călugăreanu</span> Romanian mathematician

Gheorghe Călugăreanu was a Romanian mathematician, professor at Babeș-Bolyai University, and full member of the Romanian Academy.

References