Tyranny of numbers

Last updated

The tyranny of numbers was a problem faced in the 1960s by computer engineers. Engineers were unable to increase the performance of their designs due to the huge number of components involved. In theory, every component needed to be wired to every other component (or at least many other components) and were typically strung and soldered by hand. In order to improve performance, more components would be needed, and it seemed that future designs would consist almost entirely of wiring.

Contents

History

The Cray-1 contained 50 miles of wiring. Computer Museum of America (32).jpg
The Cray-1 contained 50 miles of wiring.

The first known recorded use of the term in this context was made by the Vice President of Bell Labs in an article celebrating the 10th anniversary of the invention of the transistor, for the "Proceedings of the IRE" (Institute of Radio Engineers), June 1958 . Referring to the problems many designers were having, he wrote:

For some time now, electronic man has known how 'in principle' to extend greatly his visual, tactile, and mental abilities through the digital transmission and processing of all kinds of information. However, all these functions suffer from what has been called 'the tyranny of numbers.' Such systems, because of their complex digital nature, require hundreds, thousands, and sometimes tens of thousands of electron devices.

At the time, computers were typically built up from a series of "modules", each module containing the electronics needed to perform a single function. A complex circuit like an adder would generally require several modules working in concert. The modules were typically built on printed circuit boards of a standardized size, with a connector on one edge that allowed them to be plugged into the power and signaling lines of the machine, and were then wired to other modules using twisted pair or coaxial cable.

Since each module was relatively custom, modules were assembled and soldered by hand or with limited automation. As a result, they suffered major reliability problems. Even a single bad component or solder joint could render the entire module inoperative. Even with properly working modules, the mass of wiring connecting them together was another source of construction and reliability problems. As computers grew in complexity, and the number of modules increased, the complexity of making a machine actually work grew more and more difficult. This was the "tyranny of numbers".

Motivation for the integrated circuit

It was precisely this problem that Jack Kilby was thinking about while working at Texas Instruments. Theorizing that germanium could be used to make all common electronic components (transistors, resistors, capacitors, etc.), he set about building a single-slab component that combined the functionality of an entire module. Although successful in this goal, it was Robert Noyce's silicon version and the associated fabrication techniques that make the integrated circuit (IC) truly practical.

Unlike modules, ICs were built using photoetching techniques on an assembly line, greatly reducing their cost. Although any given IC might have the same chance of working or not working as a module, they cost so little that if they didn't work you simply threw it away and tried another. In fact, early IC assembly lines had failure rates around 90% or greater, which kept their prices high. The U.S. Air Force and NASA were major purchasers of early ICs, where their small size and light weight overcame any cost issues. They demanded high reliability, and the industry's response not only provided the desired reliability but meant that the increased yield had the effect of driving down prices.

ICs from the early 1960s were not complex enough for general computer use, but as the complexity increased through the 1960s, practically all computers switched to IC-based designs. The result was what are today referred to as the third-generation computers, which became commonplace during the early 1970s. The progeny of the integrated circuit, the microprocessor, eventually superseded the use of individual ICs as well, placing the entire collection of modules onto one chip.

Seymour Cray was particularly well known for making complex designs work in spite of the tyranny of numbers. His attention to detail and ability to fund several attempts at a working design meant that pure engineering effort could overcome the problems they faced. Yet even Cray eventually succumbed to the problem during the CDC 8600 project, which eventually led to him leaving Control Data.

Related Research Articles

<span class="mw-page-title-main">Central processing unit</span> Central computer component which executes instructions

A central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit, also known as a microchip or IC, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Very Large Scale Integration</span> Creating an integrated circuit by combining many transistors into a single chip

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit chips were developed and then widely adopted, enabling complex semiconductor and telecommunication technologies. The microprocessor and memory chips are VLSI devices.

<span class="mw-page-title-main">Digital electronics</span> Electronic circuits that utilize digital signals

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics which work primarily with analog signals. Despite the name, digital electronics designs includes important analog design considerations.

<span class="mw-page-title-main">Dual in-line package</span> Type of electronic component package

In microelectronics, a dual in-line package is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads ; eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages.

<span class="mw-page-title-main">Breadboard</span> Board with embedded spring clips that allows for electronics to be wired without soldering

A breadboard, solderless breadboard, or protoboard is a construction base used to build semi-permanent prototypes of electronic circuits. Unlike a perfboard or stripboard, breadboards do not require soldering or destruction of tracks and are hence reusable. For this reason, breadboards are also popular with students and in technological education.

<span class="mw-page-title-main">History of computing hardware (1960s–present)</span> Aspect of history

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as transistors and then integrated circuit (IC) chips. Around 1953 to 1959, discrete transistors started being considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Metal–oxide–semiconductor (MOS) large-scale integration (LSI) technology subsequently led to the development of semiconductor memory in the mid-to-late 1960s and then the microprocessor in the early 1970s. This led to primary computer memory moving away from magnetic-core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size, and power consumption of computers. These advances led to the miniaturized personal computer (PC) in the 1970s, starting with home computers and desktop computers, followed by laptops and then mobile computers over the next several decades.

<span class="mw-page-title-main">Stripboard</span>

Stripboard is the generic name for a widely used type of electronics prototyping material for circuit boards characterized by a pre-formed 0.1 inches (2.54 mm) regular (rectangular) grid of holes, with wide parallel strips of copper cladding running in one direction all the way across one side of on an insulating bonded paper board. It is commonly also known by the name of the original product Veroboard, which is a trademark, in the UK, of British company Vero Technologies Ltd and Canadian company Pixel Print Ltd. It was originated and developed in the early 1960s by the Electronics Department of Vero Precision Engineering Ltd (VPE). It was introduced as a general-purpose material for use in constructing electronic circuits - differing from purpose-designed printed circuit boards (PCBs) in that a variety of electronics circuits may be constructed using a standard wiring board.

<span class="mw-page-title-main">CDC 8600</span>

The CDC 8600 was the last of Seymour Cray's supercomputer designs while he worked for Control Data Corporation. As the natural successor to the CDC 6600 and CDC 7600, the 8600 was intended to be about 10 times as fast as the 7600, already the fastest computer on the market. The design was essentially four 7600's, packed into a very small chassis so they could run at higher clock speeds.

<span class="mw-page-title-main">Cray-3</span> Supercomputer by Cray research

The Cray-3 was a vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ICs packed into a 1 cubic foot (0.028 m3) CPU. The design goal was performance around 16 GFLOPS, about 12 times that of the Cray-2.

<span class="mw-page-title-main">Mixed-signal integrated circuit</span> Integrated circuit

A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die. Their usage has grown dramatically with the increased use of cell phones, telecommunications, portable electronics, and automobiles with electronics and digital sensors.

<span class="mw-page-title-main">Cray-2</span> 1985 supercomputer model

The Cray-2 is a supercomputer with four vector processors made by Cray Research starting in 1985. At 1.9 GFLOPS peak performance, it was the fastest machine in the world when it was released, replacing the Cray X-MP in that spot. It was, in turn, replaced in that spot by the Cray Y-MP in 1988.

<span class="mw-page-title-main">DIY audio</span>

DIY Audio, do it yourself audio. Rather than buying a piece of possibly expensive audio equipment, such as a high-end audio amplifier or speaker, the person practicing DIY Audio will make it themselves. Alternatively, a DIYer may take an existing manufactured item of vintage era and update or modify it. The benefits of doing so include the satisfaction of creating something enjoyable, the possibility that the equipment made or updated is of higher quality than commercially available products and the pleasure of creating a custom-made device for which no exact equivalent is marketed. Other motivations for DIY audio can include getting audio components at a lower cost, the entertainment of using the item, and being able to ensure quality of workmanship.

<span class="mw-page-title-main">Hybrid integrated circuit</span> Type of miniature electronic circuit

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed Wiring Board (PWB) is not considered a true hybrid circuit according to the definition of MIL-PRF-38534.

<span class="mw-page-title-main">Field-replaceable unit</span>

A field-replaceable unit (FRU) is a printed circuit board, part, or assembly that can be quickly and easily removed from a computer or other piece of electronic equipment, and replaced by the user or a technician without having to send the entire product or system to a repair facility. FRUs allow a technician lacking in-depth product knowledge to isolate faults and replace faulty components. The granularity of FRUs in a system impacts total cost of ownership and support, including the costs of stocking spare parts, where spares are deployed to meet repair time goals, how diagnostic tools are designed and implemented, levels of training for field personnel, whether end-users can do their own FRU replacement, etc.

<span class="mw-page-title-main">Depletion-load NMOS logic</span> Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

<span class="mw-page-title-main">Integrated circuit design</span> Engineering process for electronic hardware

Integrated circuit design, or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

<span class="mw-page-title-main">Computer</span> Automatic general-purpose device for performing arithmetic or logical operations

A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. The term computer system may refer to a nominally complete computer that includes the hardware, operating system, software, and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster.

A three-dimensional integrated circuit is a MOS integrated circuit (IC) manufactured by stacking as many as 16 or more ICs and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. The 3D IC is one of several 3D integration schemes that exploit the z-direction to achieve electrical performance benefits in microelectronics and nanoelectronics.

The first planar monolithic integrated circuit (IC) chip was demonstrated in 1960. The idea of integrating electronic circuits into a single device was born when the German physicist and engineer Werner Jacobi developed and patented the first known integrated transistor amplifier in 1949 and the British radio engineer Geoffrey Dummer proposed to integrate a variety of standard electronic components in a monolithic semiconductor crystal in 1952. A year later, Harwick Johnson filed a patent for a prototype IC. Between 1953 and 1957, Sidney Darlington and Yasuo Tarui proposed similar chip designs where several transistors could share a common active area, but there was no electrical isolation to separate them from each other.

References