U6 spliceosomal RNA

Last updated
U6 spliceosomal RNA
RF00026.jpg
Identifiers
SymbolU6
Rfam RF00026
Other data
RNA type Gene; snRNA; splicing
Domain(s) Eukaryota
GO GO:0000351 GO:0000353 GO:0030621 GO:0005688 GO:0046540
SO SO:0000396
PDB structures PDBe

U6 snRNA is the non-coding small nuclear RNA (snRNA) component of U6 snRNP (small nuclear ribonucleoprotein), an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex that catalyzes the excision of introns from pre-mRNA. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification and takes place only in the nucleus of eukaryotes.

Contents

The RNA sequence of U6 is the most highly conserved across species of all five of the snRNAs involved in the spliceosome, [1] suggesting that the function of the U6 snRNA has remained both crucial and unchanged through evolution.

It is common in vertebrate genomes to find many copies of the U6 snRNA gene or U6-derived pseudogenes. [2] This prevalence of "back-ups" of the U6 snRNA gene in vertebrates further implies its evolutionary importance to organism viability.

The U6 snRNA gene has been isolated in many organisms, [3] including C. elegans . [4] Among them, baker's yeast ( Saccharomyces cerevisiae ) is a commonly used model organism in the study of snRNAs.

The structure and catalytic mechanism of U6 snRNA resembles that of domain V of group II introns. [5] [6] The formation of the triple helix in U6 snRNA is deemed to be important in splicing activity, where its role is to bring the catalytic site to the splice site. [6]

Role

Base-pair specificity of the U6 snRNA allows the U6 snRNP to bind tightly to the U4 snRNA and loosely to the U5 snRNA of a triple-snRNP during the initial phase of the splicing reaction. As the reaction progresses, the U6 snRNA is unzipped from U4 and binds to the U2 snRNA. At each stage of this reaction, the U6 snRNA secondary structure undergoes extensive conformational changes. [7]

The association of U6 snRNA with the 5' end of the intron via base-pairing during the splicing reaction occurs prior to the formation of the lariat (or lasso-shaped) intermediate, and is required for the splicing process to proceed. The association of U6 snRNP with U2 snRNP via base-pairing forms the U6-U2 complex, a structure that comprises the active site of the spliceosome. [8] :433–437

Secondary structure

While the putative secondary structure consensus base pairing is confined to a short 5' stem-loop, much more extensive structures have been proposed for specific organisms such as in yeast. [9] In addition to the 5' stem loop, all confirmed U6 snRNAs can form the proposed 3' intramolecular stem loop. [10]

U4/U6 snRNA complex U4U6 snRNA.jpg
U4/U6 snRNA complex

The U6 snRNA is known to form an extensive base-pair interactions with U4 snRNA. [11] This interaction has been shown to be mutually exclusive to that of the 3' intramolecular stem loop. [7]

Associated proteins

Lsm Binding U6 snRNA Lsm Ring.jpg
Lsm Binding U6 snRNA

Free U6 snRNA is found to be associated with the proteins Prp24 and the LSms. Prp24 is thought to form an intermediate complex with the U6 snRNA, in order to facilitate the extensive base-pairing between the U4 and U6 snRNAs, and the Lsms may aid in Prp24 binding. The approximate location of these protein binding domains was determined, and the proteins were later visualized by electron microscopy. This study suggests that in the free form of U6, Prp24 binds to the telestem and the uridine-rich 3' tail of the U6 snRNA is threaded through the ring of Lsms. Another important NTC-related protein associated with U6 is Cwc2, which by interaction with important catalytic RNA elements induces the formation of a functional catalytic core in the spliceosome. Cwc2 and U6 achieve formation of this complex by interaction with the ISL and regions located near the 5' splice site. [12]

See also

Related Research Articles

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

<span class="mw-page-title-main">Spliceosome</span> Molecular machine that removes intron RNA from the primary transcript

A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs (snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to specific proteins to form a small nuclear ribonucleoprotein complex, which in turn combines with other snRNPs to form a large ribonucleoprotein complex called a spliceosome. The spliceosome removes introns from a transcribed pre-mRNA, a type of primary transcript. This process is generally referred to as splicing. An analogy is a film editor, who selectively cuts out irrelevant or incorrect material from the initial film and sends the cleaned-up version to the director for the final cut.

snRNPs, or small nuclear ribonucleoproteins, are RNA-protein complexes that combine with unmodified pre-mRNA and various other proteins to form a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. The action of snRNPs is essential to the removal of introns from pre-mRNA, a critical aspect of post-transcriptional modification of RNA, occurring only in the nucleus of eukaryotic cells. Additionally, U7 snRNP is not involved in splicing at all, as U7 snRNP is responsible for processing the 3′ stem-loop of histone pre-mRNA.

Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcribed by either RNA polymerase II or RNA polymerase III. Their primary function is in the processing of pre-messenger RNA (hnRNA) in the nucleus. They have also been shown to aid in the regulation of transcription factors or RNA polymerase II, and maintaining the telomeres.

<span class="mw-page-title-main">Minor spliceosome</span>

The minor spliceosome is a ribonucleoprotein complex that catalyses the removal (splicing) of an atypical class of spliceosomal introns (U12-type) from messenger RNAs in some clades of eukaryotes. This process is called noncanonical splicing, as opposed to U2-dependent canonical splicing. U12-type introns represent less than 1% of all introns in human cells. However they are found in genes performing essential cellular functions.

<span class="mw-page-title-main">Group II intron</span> Class of self-catalyzing ribozymes

Group II introns are a large class of self-catalytic ribozymes and mobile genetic elements found within the genes of all three domains of life. Ribozyme activity can occur under high-salt conditions in vitro. However, assistance from proteins is required for in vivo splicing. In contrast to group I introns, intron excision occurs in the absence of GTP and involves the formation of a lariat, with an A-residue branchpoint strongly resembling that found in lariats formed during splicing of nuclear pre-mRNA. It is hypothesized that pre-mRNA splicing may have evolved from group II introns, due to the similar catalytic mechanism as well as the structural similarity of the Group II Domain V substructure to the U6/U2 extended snRNA. Finally, their ability to site-specifically insert into DNA sites has been exploited as a tool for biotechnology. For example, group II introns can be modified to make site-specific genome insertions and deliver cargo DNA such as reporter genes or lox sites

<span class="mw-page-title-main">LSm</span> Family of RNA-binding proteins

In molecular biology, LSm proteins are a family of RNA-binding proteins found in virtually every cellular organism. LSm is a contraction of 'like Sm', because the first identified members of the LSm protein family were the Sm proteins. LSm proteins are defined by a characteristic three-dimensional structure and their assembly into rings of six or seven individual LSm protein molecules, and play a large number of various roles in mRNA processing and regulation.

<span class="mw-page-title-main">U11 spliceosomal RNA</span> Non-coding RNA involved in alternative splicing

The U11 snRNA is an important non-coding RNA in the minor spliceosome protein complex, which activates the alternative splicing mechanism. The minor spliceosome is associated with similar protein components as the major spliceosome. It uses U11 snRNA to recognize the 5' splice site while U12 snRNA binds to the branchpoint to recognize the 3' splice site.

<span class="mw-page-title-main">U1 spliceosomal RNA</span>

U1 spliceosomal RNA is the small nuclear RNA (snRNA) component of U1 snRNP, an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification, and takes place only in the nucleus of eukaryotes.

<span class="mw-page-title-main">U2 spliceosomal RNA</span>

U2 spliceosomal snRNAs are a species of small nuclear RNA (snRNA) molecules found in the major spliceosomal (Sm) machinery of virtually all eukaryotic organisms. In vivo, U2 snRNA along with its associated polypeptides assemble to produce the U2 small nuclear ribonucleoprotein (snRNP), an essential component of the major spliceosomal complex. The major spliceosomal-splicing pathway is occasionally referred to as U2 dependent, based on a class of Sm intron—found in mRNA primary transcripts—that are recognized exclusively by the U2 snRNP during early stages of spliceosomal assembly. In addition to U2 dependent intron recognition, U2 snRNA has been theorized to serve a catalytic role in the chemistry of pre-RNA splicing as well. Similar to ribosomal RNAs (rRNAs), Sm snRNAs must mediate both RNA:RNA and RNA:protein contacts and hence have evolved specialized, highly conserved, primary and secondary structural elements to facilitate these types of interactions.

<span class="mw-page-title-main">U4 spliceosomal RNA</span> Non-coding RNA component of the spliceosome

The U4 small nuclear Ribo-Nucleic Acid is a non-coding RNA component of the major or U2-dependent spliceosome – a eukaryotic molecular machine involved in the splicing of pre-messenger RNA (pre-mRNA). It forms a duplex with U6, and with each splicing round, it is displaced from the U6 snRNA in an ATP-dependent manner, allowing U6 to re-fold and create the active site for splicing catalysis. A recycling process involving protein Brr2 releases U4 from U6, while protein Prp24 re-anneals U4 and U6. The crystal structure of a 5′ stem-loop of U4 in complex with a binding protein has been solved.

<span class="mw-page-title-main">U5 spliceosomal RNA</span>

U5 snRNA is a small nuclear RNA (snRNA) that participates in RNA splicing as a component of the spliceosome. It forms the U5 snRNP by associating with several proteins including Prp8 - the largest and most conserved protein in the spliceosome, Brr2 - a helicase required for spliceosome activation, Snu114, and the 7 Sm proteins. U5 snRNA forms a coaxially-stacked series of helices that project into the active site of the spliceosome. Loop 1, which caps this series of helices, forms 4-5 base pairs with the 5'-exon during the two chemical reactions of splicing. This interaction appears to be especially important during step two of splicing, exon ligation.

<span class="mw-page-title-main">U2AF2</span> Protein-coding gene in the species Homo sapiens

Splicing factor U2AF 65 kDa subunit is a protein that in humans is encoded by the U2AF2 gene.

<span class="mw-page-title-main">PRPF3</span> Protein-coding gene in the species Homo sapiens

U4/U6 small nuclear ribonucleoprotein Prp3 is a protein that in humans is encoded by the PRPF3 gene.

<span class="mw-page-title-main">PRPF4</span> Protein-coding gene in the species Homo sapiens

U4/U6 small nuclear ribonucleoprotein Prp4 is a protein that in humans is encoded by the PRPF4 gene. The removal of introns from nuclear pre-mRNAs occurs on complexes called spliceosomes, which are made up of 4 small nuclear ribonucleoprotein (snRNP) particles and an undefined number of transiently associated splicing factors. PRPF4 is 1 of several proteins that associate with U4 and U6 snRNPs.[supplied by OMIM]

<span class="mw-page-title-main">PPIH</span> Protein-coding gene in the species Homo sapiens

Peptidyl-prolyl cis-trans isomerase H is an enzyme that in humans is encoded by the PPIH gene.

<span class="mw-page-title-main">Prp24</span>

Prp24 is a protein part of the pre-messenger RNA splicing process and aids the binding of U6 snRNA to U4 snRNA during the formation of spliceosomes. Found in eukaryotes from yeast to E. coli, fungi, and humans, Prp24 was initially discovered to be an important element of RNA splicing in 1989. Mutations in Prp24 were later discovered in 1991 to suppress mutations in U4 that resulted in cold-sensitive strains of yeast, indicating its involvement in the reformation of the U4/U6 duplex after the catalytic steps of splicing.

<span class="mw-page-title-main">Prp8</span>

Prp8 refers to both the Prp8 protein and Prp8 gene. Prp8's name originates from its involvement in pre-mRNA processing. The Prp8 protein is a large, highly conserved, and unique protein that resides in the catalytic core of the spliceosome and has been found to have a central role in molecular rearrangements that occur there. Prp8 protein is a major central component of the catalytic core in the spliceosome, and the spliceosome is responsible for splicing of precursor mRNA that contains introns and exons. Unexpressed introns are removed by the spliceosome complex in order to create a more concise mRNA transcript. Splicing is just one of many different post-transcriptional modifications that mRNA must undergo before translation. Prp8 has also been hypothesized to be a cofactor in RNA catalysis.

Christine Guthrie (1945-2022) was an American yeast geneticist and American Cancer Society Research Professor of Genetics at University of California San Francisco. She showed that yeast have small nuclear RNAs (snRNAs) involved in splicing pre-messenger RNA into messenger RNA in eukaryotic cells. Guthrie cloned and sequenced the genes for yeast snRNA and established the role of base pairing between the snRNAs and their target sequences at each step in the removal of an intron. She also identified proteins that formed part of the spliceosome complex with the snRNAs. Elected to the National Academy of Sciences in 1993, Guthrie edited Guide to Yeast Genetics and Molecular Biology, an influential methods series for many years.

<span class="mw-page-title-main">Kiyoshi Nagai</span> Japanese structural biologist (1949–2019)

Kiyoshi Nagai was a Japanese structural biologist at the MRC Laboratory of Molecular Biology Cambridge, UK. He was known for his work on the mechanism of RNA splicing and structures of the spliceosome.

References

  1. Brow DA, Guthrie C (July 1988). "Spliceosomal RNA U6 is remarkably conserved from yeast to mammals". Nature. 334 (6179): 213–8. Bibcode:1988Natur.334..213B. doi:10.1038/334213a0. PMID   3041282. S2CID   4236176.
  2. Marz M, Kirsten T, Stadler PF (December 2008). "Evolution of spliceosomal snRNA genes in metazoan animals". Journal of Molecular Evolution (Submitted manuscript). 67 (6): 594–607. Bibcode:2008JMolE..67..594M. doi:10.1007/s00239-008-9149-6. PMID   19030770. S2CID   18830327.
  3. Anderson MA, Purcell J, Verkuijl SA, Norman VC, Leftwich PT, Harvey-Samuel T, Alphey LS (March 2020). "In Vitro Validation of Pol III Promoters". ACS Synthetic Biology. 9 (3): 678–681. doi:10.1021/acssynbio.9b00436. PMC   7093051 . PMID   32129976.
  4. Thomas J, Lea K, Zucker-Aprison E, Blumenthal T (May 1990). "The spliceosomal snRNAs of Caenorhabditis elegans". Nucleic Acids Research. 18 (9): 2633–42. doi:10.1093/nar/18.9.2633. PMC   330746 . PMID   2339054.
  5. Toor N, Keating KS, Taylor SD, Pyle AM (April 2008). "Crystal structure of a self-spliced group II intron". Science. 320 (5872): 77–82. Bibcode:2008Sci...320...77T. doi:10.1126/science.1153803. PMC   4406475 . PMID   18388288.
  6. 1 2 Fica SM, Mefford MA, Piccirilli JA, Staley JP (May 2014). "Evidence for a group II intron-like catalytic triplex in the spliceosome". Nature Structural & Molecular Biology. 21 (5): 464–471. doi:10.1038/nsmb.2815. PMC   4257784 . PMID   24747940.
  7. 1 2 Fortner DM, Troy RG, Brow DA (January 1994). "A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing". Genes & Development. 8 (2): 221–33. doi: 10.1101/gad.8.2.221 . PMID   8299941.
  8. Weaver, Robert J. (2008). Molecular Biology. Boston: McGraw Hill Higher Education. ISBN   978-0-07-127548-4.
  9. Karaduman R, Fabrizio P, Hartmuth K, Urlaub H, Lührmann R (March 2006). "RNA structure and RNA-protein interactions in purified yeast U6 snRNPs". Journal of Molecular Biology. 356 (5): 1248–62. doi:10.1016/j.jmb.2005.12.013. hdl: 11858/00-001M-0000-0012-E5F7-6 . PMID   16410014.
  10. Butcher SE, Brow DA (June 2005). "Towards understanding the catalytic core structure of the spliceosome". Biochemical Society Transactions. 33 (Pt 3): 447–9. doi:10.1042/BST0330447. PMID   15916538.
  11. Orum H, Nielsen H, Engberg J (November 1991). "Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions". Journal of Molecular Biology. 222 (2): 219–32. doi:10.1016/0022-2836(91)90208-N. PMID   1960724.
  12. Rasche N, Dybkov O, Schmitzová J, Akyildiz B, Fabrizio P, Lührmann R (March 2012). "Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre". The EMBO Journal. 31 (6): 1591–604. doi:10.1038/emboj.2011.502. PMC   3321175 . PMID   22246180.

Further reading