This article needs additional citations for verification .(November 2009) |
In computing, the USB human interface device class (USB HID class) is a part of the USB specification for computer peripherals: it specifies a device class (a type of computer hardware) for human interface devices such as keyboards, mice, touchscreen, game controllers and alphanumeric display devices.
The USB HID class is defined in a number of documents provided by the USB Implementers Forum's Device Working Group. The primary document used to describe the USB HID class is the Device Class Definition for HID 1.11. [1]
The USB HID class describes devices used with nearly every modern computer. Many predefined functions exist in the USB HID class. These functions allow hardware manufacturers to design a product to USB HID class specifications and expect it to work with any software that also meets these specifications.
The same HID protocol is used unmodified in Bluetooth human interface devices. [2] The Bluetooth profile specification only points readers to the USB HID documentation. In this sense those devices also belong to the USB HID class.
Keyboards are a common kind of USB HID class device. The USB HID class keyboard is normally designed with an IN endpoint that communicates keystrokes to the computer and an OUT endpoint that communicates the status of the keyboard's LEDs from the computer to the keyboard. The PC 97 standard requires that a computer's BIOS must detect and work with USB HID class keyboards that are designed to be used during the boot process.
Some keyboards implement the USB Boot Keyboard profile specified in the USB Device Class Definition for Human Interface Devices (HID) v1.11 and are explicitly configured to use the boot protocol. These are limited to 6-key rollover (6KRO) and will interrupt the CPU every time the keyboard is polled (even if there is no state change) unless the USB controller is programmed to tell the keyboard to respond with negative acknowledgments, which the USB controller discards in hardware without interrupting the CPU, when there are no state changes to report. This profile is intended to allow the BIOS to handle a USB keyboard in the absence of a USB-aware operating system. The recommended profile for keyboards that are not in boot mode in this specification limits keyboards to 6KRO and causes them to respond to an interrupt with a status report at least every half second (again, even if there is no state change) in order to implement typematic (repeating the scancode when the key is pressed long enough) unless the USB controller is programmed to tell the keyboard to reply with negative acknowledgments whenever there are no state changes to report. However, keyboards in non-boot mode are free to implement an alternative HID profile. [1]
The above-mentioned behavior is in contrast to the PS/2 interface, which supports n-key rollover (NKRO) for keyboards capable of supporting it.
Computer mouse is another common USB HID class device. USB HID mice can range from single-button simple devices to multi-button compound devices. Most modern operating systems ship with drivers for standard HID mouse designs (the most common modern mouse design has two dedicated buttons and a mouse wheel that doubles as the third button); mice with extended functionality require custom drivers from the manufacturer.
USB mice have lower latencies than PS/2 mice because standard USB mice are often polled at a default rate of 125 Hz while standard PS/2 mice send interrupts at a default rate of 100 Hz when they have data to send to the computer. [3] [4] Also, USB mice do not cause the USB controller to interrupt the system when they have no status change to report according to the USB HID specification's default profile for mouse devices. [1] Both PS/2 and USB allow the sample rate to be overridden, with PS/2 supporting a sampling rate of up to 200 Hz [5] and USB supporting a polling rate up to 1 kHz [3] as long as the USB mouse runs at full-speed or higher USB speeds.
Modern game controllers and joysticks are often USB HID class devices. Unlike legacy game port devices, USB HID class game devices do not normally require proprietary drivers to function. Nearly all game devices will function using onboard drivers as long as the device is designed around the drivers and the USB HID class specifications.
The USB HID class specifications allow for myriad other devices under the USB HID class. Some examples are automobile simulation controllers, exercise machines, telephony devices, thermometers, audio controls and medical instrumentation. Even uninterruptible power supplies and software protection dongles [6] declare themselves under this class, despite the fact they often have no human interface at all. Any device can be a USB HID class device as long as a designer meets the USB HID class logical specifications. This is not to say that there is no need to ship drivers for these devices, nor that an operating system will immediately recognize the device. This only means that the device can declare itself under the human interface device class.
The USB interface is vulnerable to security exploits such as BadUSB that abuse the combination of USB's ability to connect many different kinds of devices, its inability to verify that devices are actually what they claim to be, the possibility for USB devices to change their type or announce additional subdevices while plugged in, and its default behavior of accepting any device that connects to it. As a partial countermeasure, PS/2 peripherals may be used instead together with disabling all USB ports. [7]
One of the benefits of a well-defined specification like the USB HID class is the abundance of device drivers available in most modern operating systems. The USB HID class devices and their basic functions are defined in USB-IF documentation without any specific software in mind. Because of these generic descriptions, it is easy for operating system designers to include functioning drivers for devices such as keyboards, mice, and other generic human interface devices. The inclusion of these generic drivers allows for faster deployment of devices and easier installation by end-users. Windows 98 was the first version of Windows that supported USB HID.
The USB human interface device class can be used to describe both device and interface classes. The interface class is used when a USB device can contain more than one function. It is possible, therefore, to have USB devices with two different interfaces at the same time (for example, a USB telephone may use a keypad covered by the HID class and a speaker covered by the USB communications device class).
The interface devices are also defined with subclass descriptors. The subclass descriptor is used to declare a device bootable. A boot device meets a minimum adherence to a basic protocol and will be recognized by a computer's BIOS.
Each USB HID interface communicates with the host using either a control pipe or an interrupt pipe. Isochronous and bulk pipes are not used in HID class devices. Both IN and OUT control transfers are required for enumeration; only an IN interrupt transfer is required for HID reports. OUT interrupt transfers are optional in HID-class devices.
The USB HID class requires that every device describes how it will communicate with the host device in order to accurately predict and define all current and future human interface devices. During enumeration the device describes how its reports are to be structured so that the host device can properly prepare to receive this information.
The host periodically polls the device's interrupt IN endpoint during operation. When the device has data to send it forms a report and sends it as a reply to the poll token. Common devices such as keyboards and mice send reports that are compliant with standards set by the USB Implementers Forum (USB-IF). [8] When a vendor makes a custom USB HID class device, the reports formed by the device need to match the report description given during enumeration and the driver installed on the host system. In this way it is possible for the USB HID class to be extremely flexible.
There are two levels of APIs related to USB HID: the USB level and the operating system level. At the USB level, there is a protocol for devices to announce their capabilities and the operating system to parse the data it gets. The operating system then offers a higher-level view to applications, which do not need to include support for individual devices but for classes of devices. This abstraction layer allows a game to work with any USB controller, for example, even ones created after the game.
In computing, BIOS is firmware used to provide runtime services for operating systems and programs and to perform hardware initialization during the booting process. The firmware comes pre-installed on the computer's motherboard.
A computer mouse is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer on a display, which allows a smooth control of the graphical user interface of a computer.
In the context of an operating system, a device driver is a computer program that operates or controls a particular type of device that is attached to a computer or automaton. A driver provides a software interface to hardware devices, enabling operating systems and other computer programs to access hardware functions without needing to know precise details about the hardware being used.
A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.
Universal Serial Bus (USB) is an industry standard that allows data exchange and delivery of power between many types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.
ACCESS.bus, or A.b for short, is a peripheral-interconnect computer bus developed by Philips and DEC in the early 1990s, based on Philips' I²C system. It is similar in purpose to USB, in that it allows low-speed devices to be added or removed from a computer on the fly. While it was made available earlier than USB, it never became popular as USB gained in popularity.
In computing, a plug and play (PnP) device or computer bus is one with a specification that facilitates the recognition of a hardware component in a system without the need for physical device configuration or user intervention in resolving resource conflicts. The term "plug and play" has since been expanded to a wide variety of applications to which the same lack of user setup applies.
A USB and Firewire Host Controller Interface (UFHC) is a register-level interface that enables a host controller for USB or IEEE 1394 hardware to communicate with a host controller driver in software. The driver software is typically provided with an operating system of a personal computer, but may also be implemented by application-specific devices such as a microcontroller.
A human interface device (HID) is a type of computer device usually used by humans that takes input from or provides output to humans.
The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel that specifies the register-level interface of Serial ATA (SATA) host controllers in a non-implementation-specific manner in its motherboard chipsets.
A KVM switch is a hardware device that allows a user to control multiple computers from one or more sets of keyboards, video monitors, and mouse.
BIOS implementations provide interrupts that can be invoked by operating systems and application programs to use the facilities of the firmware on IBM PC compatible computers. Traditionally, BIOS calls are mainly used by DOS programs and some other software such as boot loaders. BIOS runs in the real address mode of the x86 CPU, so programs that call BIOS either must also run in real mode or must switch from protected mode to real mode before calling BIOS and then switching back again. For this reason, modern operating systems that use the CPU in Protected mode or Long mode generally do not use the BIOS interrupt calls to support system functions, although they use the BIOS interrupt calls to probe and initialize hardware during booting. Real mode has the 1MB memory limitation, modern boot loaders use the unreal mode or protected mode to access up to 4GB memory.
A bus mouse is a variety of PC computer mouse which is attached to the computer using a specialized interface.
QEMU is a free and open-source emulator. It emulates a computer's processor through dynamic binary translation and provides a set of different hardware and device models for the machine, enabling it to run a variety of guest operating systems. It can interoperate with Kernel-based Virtual Machine (KVM) to run virtual machines at near-native speed. QEMU can also do emulation for user-level processes, allowing applications compiled for one processor architecture to run on another.
The PS/2 port is a 6-pin mini-DIN connector used for connecting keyboards and mice to a PC compatible computer system. Its name comes from the IBM Personal System/2 series of personal computers, with which it was introduced in 1987. The PS/2 mouse connector generally replaced the older DE-9 RS-232 "serial mouse" connector, while the PS/2 keyboard connector replaced the larger 5-pin/180° DIN connector used in the IBM PC/AT design. The PS/2 keyboard port is electrically and logically identical to the IBM AT keyboard port, differing only in the type of electrical connector used. The PS/2 platform introduced a second port with the same design as the keyboard port for use to connect a mouse; thus the PS/2-style keyboard and mouse interfaces are electrically similar and employ the same communication protocol. However, unlike the otherwise similar Apple Desktop Bus connector used by Apple, a given system's keyboard and mouse port may not be interchangeable since the two devices use different sets of commands and the device drivers generally are hard-coded to communicate with each device at the address of the port that is conventionally assigned to that device.
The Apple–Intel architecture, or Mactel, is an unofficial name used for Macintosh personal computers developed and manufactured by Apple Inc. that use Intel x86 processors, rather than the PowerPC and Motorola 68000 ("68k") series processors used in their predecessors or the ARM-based Apple silicon SoCs used in their successors. As Apple changed the architecture of its products, they changed the firmware from the Open Firmware used on PowerPC-based Macs to the Intel-designed Extensible Firmware Interface (EFI). With the change in processor architecture to x86, Macs gained the ability to boot into x86-native operating systems, while Intel VT-x brought near-native virtualization with macOS as the host OS.
The Enthusiast System Architecture (ESA) specification is a royalty-free protocol for two-way communication of PC components. Announced in 2007, ESA is used for monitoring temperature of computer hardware components such as the computer case and power supply unit. The first and last official release of the ESA specification is version 1.0, released in 2007. The ESA USB specification was created by a joint venture between Microsoft, Nvidia, Logitech and several other companies. The protocol remains open and royalty-free; but, no manufacturers are currently utilizing its specification at this time. The last known devices to utilize the ESA specifications were the Dell XPS 730x and Alienware Area-51 ALX computer systems that utilized the ESA specification to control its fans, LEDs, and motorized doors as well as the monitoring of available Water cooling systems such as the Dell XPS 730x's Dell H2Ceramic Cooling System.
In computing, a keyboard controller is a device that interfaces a keyboard to a computer. Its main function is to inform the computer when a key is pressed or released. When data from the keyboard arrives, the controller raises an interrupt to allow the CPU to handle the input.
The eXtensible Host Controller Interface (xHCI) is a technical specification that provides a detailed framework for the functioning of a computer's host controller for Universal Serial Bus (USB). Known alternately as the USB 3.0 host controller specification, xHCI is designed to be backward compatible, supporting a wide range of USB devices from older USB 1.x to the more recent USB 3.x versions.
The Atari joystick port is a computer port used to connect various gaming controllers to game console and home computer systems in the 1970s to the 1990s. It was originally introduced on the Atari 2600 in 1977 and then used on the Atari 400 and 800 in 1979. It went cross-platform with the VIC-20 in 1981, and was then used on many following machines from both companies, as well as a growing list of 3rd party machines like the MSX platform and various Sega consoles.