USB killer

Last updated

A USB killer is a device that is designed to be portable and sends high-voltage power surges repeatedly into the data lines of the device it is connected to, which will damage hardware components on unprotected devices. Companies selling the device state it is designed to test components for protection from power surges and electrostatic discharge. [1] [2] [3]

Contents

Mechanism

The device typically contains several capacitors and charge and discharge circuitry. When the device is connected to a USB port, the capacitors are charged from the USB port's 5  volt supply. When they are fully charged, the device discharges them through step-up circuitry, which delivers a high voltage back into the USB port. Versions of the device have been reported to deliver a pulse of around 200 V. [2] [4] This greatly exceeds the normal voltage the USB host adapter is designed to accept; the intention is that the device will destroy it (and perhaps the southbridge which it often forms part of). In many cases, this will render the computer inoperable.

This device has been compared to the Etherkiller, [5] part of a family of cables that feed mains electricity into low-voltage sockets such as RJ45. [4]

Models

There are different models of the device, the latest being USB Killer v4. Earlier generations, including USB Killer v2, were developed by a Russian computer researcher with the alias Dark Purple. [3] [4]

Similar homemade devices have been constructed from camera flash parts, [6] both of which already feature high-voltage circuitry.

A more recent version uses the piezo inverter transformer from a CCFL driver with a simple two-transistor resonant Royer oscillator, one-shot timer and a spark gap as a lightweight way to generate an 1800 V sharp pulse more closely simulating a low-power electrostatic discharge for mitigation and circuit testing purposes. The prototype has a countdown timer and ascending bleep warning to reduce the chances of accidental or malicious use.[ citation needed ]

Malicious use

In April 2019, a student at College of Saint Rose in Albany, New York pleaded guilty to destroying 66 computers in his college using a USB killer. [7] He also destroyed seven computer monitors and computer-enhanced podiums. He was sentenced to 12 months in prison, followed by a year of supervised release. He was ordered to pay $58,471 in restitution. [7]

Mouse version

There are also computer mice with a built-in USB killer. The idea was born at the Silesian University of Technology in Poland. [8]

Related Research Articles

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

<span class="mw-page-title-main">RS-232</span> Standard for serial communication

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal or PC, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997. The RS-232 standard had been commonly used in computer serial ports and is still widely used in industrial communication devices.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between two electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two differently-charged objects when brought close together or when the dielectric between them breaks down, often creating a visible spark associated with the static electricity between the objects.

<span class="mw-page-title-main">TI MSP430</span>

The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 was designed for low power consumption embedded applications and low cost.

<span class="mw-page-title-main">Game port</span> Computer device port

The game port is a device port that was found on IBM PC compatible and other computer systems throughout the 1980s and 1990s. It was the traditional connector for joystick input, and occasionally MIDI devices, until made obsolete by USB in the late 1990s.

<span class="mw-page-title-main">Hot swapping</span> Concept in computing

Hot swapping is the replacement or addition of components to a computer system without stopping, shutting down, or rebooting the system; hot plugging describes the addition of components only. Components which have such functionality are said to be hot-swappable or hot-pluggable; likewise, components which do not are cold-swappable or cold-pluggable.

<span class="mw-page-title-main">Surge protector</span> Protects electrical devices from voltage spikes

A surge protector (or spike suppressor, surge suppressor, surge diverter, surge protection device or transient voltage surge suppressor is an appliance or device intended to protect electrical devices in alternating current circuits from voltage spikes with very short duration measured in microseconds, which can arise from a variety of causes including lightning strikes in the vicinity.

<span class="mw-page-title-main">555 timer IC</span> Integrated circuit used for timer applications

The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two or four timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

<span class="mw-page-title-main">Marx generator</span> High-voltage pulse generator

A Marx generator is an electrical circuit first described by Erwin Otto Marx in 1924. Its purpose is to generate a high-voltage pulse from a low-voltage DC supply. Marx generators are used in high-energy physics experiments, as well as to simulate the effects of lightning on power-line gear and aviation equipment. A bank of 36 Marx generators is used by Sandia National Laboratories to generate X-rays in their Z Machine.

<span class="mw-page-title-main">Overvoltage</span> When voltage across/within a circuit is raised beyond the design limit

In electrical engineering, overvoltage is the raising of voltage beyond the design limit of a circuit or circuit element. The conditions may be hazardous. Depending on its duration, the overvoltage event can be transient—a voltage spike—or permanent, leading to a power surge.

<span class="mw-page-title-main">In-system programming</span> Embedded system programming technique

In-system programming (ISP), or also called in-circuit serial programming (ICSP), is the ability of some programmable logic devices, microcontrollers, chipsets and other embedded devices to be programmed while installed in a complete system, rather than requiring the chip to be programmed prior to installing it into the system. It also allows firmware updates to be delivered to the on-chip memory of microcontrollers and related processors without requiring specialist programming circuitry on the circuit board, and simplifies design work.

<span class="mw-page-title-main">Battery charger</span> Device used to provide electricity

A battery charger, recharger, or simply charger, is a device that stores energy in a battery by running an electric current through it. The charging protocol depends on the size and type of the battery being charged. Some battery types have high tolerance for overcharging and can be recharged by connection to a constant voltage source or a constant current source, depending on battery type. Simple chargers of this type must be manually disconnected at the end of the charge cycle. Other battery types use a timer to cut off when charging should be complete. Other battery types cannot withstand over-charging, becoming damaged, over heating or even exploding. The charger may have temperature or voltage sensing circuits and a microprocessor controller to safely adjust the charging current and voltage, determine the state of charge, and cut off at the end of charge. Chargers may elevate the output voltage proportionally with current to compensate for impedance in the wires.

<span class="mw-page-title-main">Power supply unit (computer)</span> Internal computer component that provides power to other components

A power supply unit (PSU) converts mains AC to low-voltage regulated DC power for the internal components of a computer. Modern personal computers universally use switched-mode power supplies. Some power supplies have a manual switch for selecting input voltage, while others automatically adapt to the main voltage.

In-circuit testing (ICT) is an example of white box testing where an electrical probe tests a populated printed circuit board (PCB), checking for shorts, opens, resistance, capacitance, and other basic quantities which will show whether the assembly was correctly fabricated. It may be performed with a "bed of nails" test fixture and specialist test equipment, or with a fixtureless in-circuit test setup.

<span class="mw-page-title-main">Applications of capacitors</span> Uses of capacitors in daily life

Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.

A vector inversion generator (VIG) is an electric pulse compression and voltage multiplication device, allowing shaping a slower, lower voltage pulse to a narrower, higher-voltage one. VIGs are used in military technology, e.g. some directed-energy weapons, as a secondary stage of another pulsed power source, commonly an explosive-driven ferroelectric generator.

<span class="mw-page-title-main">Film capacitor</span> Electrical capacitor with an insulating plastic film as the dielectric

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.

<span class="mw-page-title-main">Arduino Uno</span> Microcontroller board

The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released in 2010. The microcontroller board is equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (shields) and other circuits. The board has 14 digital I/O pins, 6 analog I/O pins, and is programmable with the Arduino IDE, via a type B USB cable. It can be powered by a USB cable or a barrel connector that accepts voltages between 7 and 20 volts, such as a rectangular 9-volt battery. It has the same microcontroller as the Arduino Nano board, and the same headers as the Leonardo board. The hardware reference design is distributed under a Creative Commons Attribution Share-Alike 2.5 license and is available on the Arduino website. Layout and production files for some versions of the hardware are also available.

<span class="mw-page-title-main">Arduino Nano</span> Single-board microcontroller

The Arduino Nano is an open-source breadboard-friendly microcontroller board based on the Microchip ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released in 2008. It offers the same connectivity and specs of the Arduino Uno board in a smaller form factor.

References

  1. Armasu, Lucian (2017-08-12). "'USB Killer 2.0' Shows That Most USB-Enabled Devices Are Vulnerable To Power Surge Attacks". Tom's Hardware .
  2. 1 2 "USB Killer: A device that can destroy a PC in seconds". Deccan Chronicle . 2017-08-12.
  3. 1 2 Bolton, Doug (2017-08-12). "Russian computer researcher creates a USB killer thumb drive that will fry your computer in seconds". The Independent .
  4. 1 2 3 "The USB Killer, Version 2.0". Hackaday . 10 October 2015.
  5. "The Etherkiller" . Retrieved 3 October 2018. It all started one day with this guy, the original Etherkiller, developed with a few misc parts to warn new users that the IT department is not to be messed with. You too can make one at home, connect the transmit pins of the RJ-45 to HOT on 110VAC and the receive pins to Common.
  6. Buis, Juan (9 November 2016). "This terrifying homemade USB killer will instantly kill your computer". The Next Web.
  7. 1 2 "Indian Student in US Sentenced to 1-Year in Prison for Damaging University Computers". NDTV India . 14 August 2019. Retrieved 16 April 2019.
  8. Makiela, Dawid. "Aktywowane, niszczące urządzenie wskazujące (USB-Killer Mouse)". UPRP (Polish Patent Office).