UTEC

Last updated

UTEC (University of Toronto Electronic Computer Mark I) [1] was a computer built at the University of Toronto (UofT) in the early 1950s. It was the first computer in Canada, one of the first working computers in the world, although only built in a prototype form while awaiting funding for expansion into a full-scale version. This funding was eventually used to purchase a surplus Manchester Mark 1 from Ferranti in the UK instead, and UTEC quickly disappeared.

Contents

Background

Immediately after the end of World War II several members of the UofT staff met informally as the Committee on Computing Machines to discuss their computation needs over the next few years. In 1946 a small $1,000 grant was used to send one of the group's members to tour several US research labs to see their progress on computers and try to see what was possible given UofT's likely funding. Due to UofT's preeminent position in the Canadian research world, the tour was also followed by members of the Canadian Research Council.

In January 1947 the committee delivered a report suggesting the creation of a formal Computing Center, primarily as a service bureau to provide computing services both to the university and commercial interests, as well as the nucleus of a research group into computing machinery. Specifically they recommended the immediate renting of an IBM mechanical punched card-based calculator, building a simple differential analyzer, and the eventual purchase or construction of an electronic computer. The report noted that funding should be expected from both the National Research Council (NRC) and the Defense Research Board (DRB).

The DRB soon provided a grant of $6,500 to set up the Computation Center, with the Committee eventually selecting Kelly Gotlieb to run it. Additional funding followed in February 1948 with a $20,000 a year grant from a combined pool set up by the DRB and NRC. Although this was less than was hoped for, the IBM machinery was soon in place and being used to calculate several tables for Atomic Energy of Canada Limited (AECL). Additionally a small version of the differential analyzer was completed by September 1948, although it appears to have seen little use.

Preliminary work on an electronic computer also started about the same time with some experimental work in various circuit designs. However they also felt that in order to get a machine working quickly, a fully electronic design was simply too state of the art and had significant risk. Instead they considered building a copy of Bell Labs' Model 6 relay-based machine, which they had seen earlier. However, when they finally decided to go ahead with the project in August 1948, Northern Electric (Bell's arm in Canada) informed them they would charge $25,000 ($332839 in 2024) to license the Model 6 design.

At a meeting with the NRC in March 1949, the NRC turned down their request for additional funding for the license, and instead suggested that the Center invest in a fully electronic computer, upping the yearly grants to $50,000 to that end. This turned out to be a major "win" - relay based computers quickly disappeared, and electronic systems proved themselves quickly.

UTEC

Beatrice Helen Worsley and Perham Stanley, two graduate students working at the Computation Center, were sent to Cambridge University to work with Maurice Wilkes who was in the process of completing the EDSAC. Worsley wrote the program that generated a table of squares, the first program to successfully run on EDSAC.

Another two graduate students, Alf Ratz and Josef Kates had been studying circuitry for some time by this point, and turned their attention to computer memory systems. Their first attempts were with a novel system based on neon tubes, but a 1949 visit by Freddie Williams led to them abandoning this work and moving to Williams tubes instead.

Given the current level of funding a full-scale machine was not possible, so it was decided to build a smaller machine to test out the various components. Williams tubes would store 256 12-bit words, with instructions using 3-bits of a word leaving 9-bits for addressing (allowing up to 512 words of memory).

Parts of the machine were up and running quickly, with the math and logic units (the arithmetic logic unit in modern terminology) running by the autumn of 1950. Memory reliability proved to be a serious problem, as it was for all systems using the Williams tube concept, but Katz introduced shielding that improved things somewhat. The machine was declared fully operational on October 1, 1951.

Over the next few months major efforts were made to increase reliability, as well as add a second bank of memory to bring it to the full 512 words. Libraries added math functions for 12-, 24-, 36- and 48-bit math. A basic 12-bit addition took about 240 microseconds, multiplication about 18 milliseconds.

With the basic system up and running, attention turned to a "full sized" version. This machine would use a 44-bit word with 1,024 words of memory backed up with a 10,000 word magnetic drum to be supplied by Ferranti Canada. A new math unit would operate on an entire word in parallel, instead of bit-serial as with most machines of the era, dramatically improving performance so that an addition would take only 20 microseconds and a multiply about 200—faster than the prototype at addition even on its much smaller word size.

Success of the UTEC created intense demand within the Canadian research establishment to start construction of the full scale follow-on. The funding pool was increased to $300,000 to cover development and construction.

FERUT

While UTEC was being built, a similar machine was under construction at Manchester University, known as the "Baby". Once it started working the university signed an agreement with Ferranti (in the UK) to build a full-scale machine eventually known as the Mark I. The new machine was delivered to the university in February 1951, making it the first commercial computer, about one month earlier than the UNIVAC I was handed over to the US Census Bureau.

Ferranti had high hopes for further sales of the machine, and were happy when an order was placed by the British Atomic Energy Authority for delivery in autumn of 1952. However the government changed hands while the machine was being built, and all government contracts over £100,000 were cancelled outright. This left a partially completed Mark I sitting at Ferranti, who became interested in unloading it as soon as possible.

Word of the machine quickly reached the AECL, who suggested that they use the $300,000 set aside for the "new" UTEC to purchase the Mark I instead. The Computation Center considered the Mark I to be inferior to their own design and rejected it, notably because it used a serial math unit like their prototype and would thus be much slower.

The AECL was not terribly impressed but came up with a solution; if the Computation Center would buy the Mark I, another $150,000 would be made available to continue development of the UTEC, and an equal amount if they decided to actually build it. This sort of deal one does not refuse, and plans to ship the Mark I to Toronto were soon underway.

The machine arrived on April 30, 1952, at the time it was major news. Named Ferut (Ferranti, University of Toronto) by Worsley shortly before it arrived, it took the Ferranti engineers several months to set it up. Even then it became one of the first "large" machines to start operation in North America. Ferut would go on to be a major research system in Canada, being used by Ontario Hydro to calculate changes in water levels due to the opening of the St. Lawrence Seaway, various development of the groundbreaking ReserVec system with Ferranti Canada for Trans Canada Airlines, and even rental of time for commercial seismic data processing.

The arrival of the Ferut also spelled the death of the UTEC project. Even with the additional funding, most of the engineers quickly drifted to the Ferut machine.

Related Research Articles

<span class="mw-page-title-main">EDSAC</span> 1940s–1950s British computer

The Electronic Delay Storage Automatic Calculator (EDSAC) was an early British computer. Inspired by John von Neumann's seminal First Draft of a Report on the EDVAC, the machine was constructed by Maurice Wilkes and his team at the University of Cambridge Mathematical Laboratory in England. EDSAC was the second electronic digital stored-program computer, after the Manchester Mark 1, to go into regular service.

<span class="mw-page-title-main">History of computing hardware</span>

The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers.

<span class="mw-page-title-main">LEO (computer)</span> 1951 British computer

The LEO was a series of early computer systems created by J. Lyons and Co. The first in the series, the LEO I, was the first computer used for commercial business applications.

<span class="mw-page-title-main">IBM 704</span> Vacuum-tube computer system (1954)

The IBM 704 is the model name of a large digital mainframe computer introduced by IBM in 1954. Designed by John Backus and Gene Amdahl, it was the first mass-produced computer with hardware for floating-point arithmetic. The IBM 704 Manual of operation states:

The type 704 Electronic Data-Processing Machine is a large-scale, high-speed electronic calculator controlled by an internally stored program of the single address type.

<span class="mw-page-title-main">IBM 701</span> Vacuum-tube computer system

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was designed and developed by Jerrier Haddad and Nathaniel Rochester and was based on the IAS machine at Princeton.

von Neumann architecture Computer architecture where code and data share a common bus

The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on a 1945 description by John von Neumann, and by others, in the First Draft of a Report on the EDVAC. The document describes a design architecture for an electronic digital computer with these components:

<span class="mw-page-title-main">Manchester Baby</span> First electronic stored-program computer, 1948

The Manchester Baby, also called the Small-Scale Experimental Machine (SSEM), was the first electronic stored-program computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948.

<span class="mw-page-title-main">Department of Computer Science and Technology, University of Cambridge</span> Computer science division at the University of Cambridge

The Department of Computer Science and Technology, formerly the Computer Laboratory, is the computer science department of the University of Cambridge. As of 2023 it employed 56 faculty members, 45 support staff, 105 research staff, and about 205 research students. The current Head of Department is Professor Alastair Beresford.

<span class="mw-page-title-main">Ferranti Mark 1</span> First commercial electronic computer

The Ferranti Mark 1, also known as the Manchester Electronic Computer in its sales literature, and thus sometimes called the Manchester Ferranti, was produced by British electrical engineering firm Ferranti Ltd. It was the world's first commercially available electronic general-purpose stored program digital computer.

<span class="mw-page-title-main">Ferranti-Packard</span> Defunct Canadian manufacturer of electronic displays

Ferranti-Packard Ltd. was the Canadian division of Ferranti's global manufacturing empire, formed by the 1958 merger of Ferranti Electric and Packard Electric. For several years in the post-war era, the company underwent a dramatic expansion and had several brushes with success in the computer market, but eventually shed various divisions and returned to being an electrical grid supplier once again. The company was purchased in 1998 by the Austrian company, VA TECH. On July 23, 2005 Siemens PTD purchased VA Tech's Transmission and Distribution Division (T&D) group for transformers and switchgear.

<span class="mw-page-title-main">DATAR</span> Computerized battlefield information system

DATAR, short for Digital Automated Tracking and Resolving, was a pioneering computerized battlefield information system. DATAR combined the data from all of the sensors in a naval task force into a single "overall view" that was then transmitted back to all of the ships and displayed on plan-position indicators similar to radar displays. Commanders could then see information from everywhere, not just their own ship's sensors.

<span class="mw-page-title-main">ReserVec</span> Computerized reservation system

ReserVec was a computerized reservation system developed by Ferranti Canada for Trans-Canada Air Lines in the late 1950s. It appears to be the first such system ever developed, predating the more famous SABRE system in the United States by about two years. Although Ferranti had high hopes that the system would be used by other airlines, no further sales were forthcoming and development of the system ended. Major portions of the transistor-based circuit design were put to good use in the Ferranti-Packard 6000 computer, which would later go on to see major sales in Europe as the ICT 1904.

John Makepeace Bennett was an early Australian computer scientist. He was Australia's first professor of computer science and the founding president of the Australian Computer Society. His pioneering career included work on early computers such as EDSAC, Ferranti Mark 1* and SILLIAC, and spreading the word about the use of computers through computing courses and computing associations.

<span class="mw-page-title-main">The National Museum of Computing</span> Museum in Milton Keynes, United Kingdom

The National Museum of Computing is a UK-based museum that is dedicated to collecting and restoring historic computer systems, and is home to the world's largest collection of working historic computers. The museum is located on Bletchley Park in Milton Keynes, Buckinghamshire. It opened in 2007 in Block H – the first purpose-built computer centre in the world, having housed six of the ten Colossus computers that were in use at the end of World War II.

<span class="mw-page-title-main">Atlas (computer)</span> Supercomputer of the 1960s

The Atlas was one of the world's first supercomputers, in use from 1962 to 1972. Atlas's capacity promoted the saying that when it went offline, half of the United Kingdom's computer capacity was lost. It is notable for being the first machine with virtual memory using paging techniques; this approach quickly spread, and is now ubiquitous.

<span class="mw-page-title-main">Manchester Mark 1</span> British stored-program computer, 1949

The Manchester Mark 1 was one of the earliest stored-program computers, developed at the Victoria University of Manchester, England from the Manchester Baby. Work began in August 1948, and the first version was operational by April 1949; a program written to search for Mersenne primes ran error-free for nine hours on the night of 16/17 June 1949.

Ferranti Canada's Route Reference Computer was the first computerized mail sorter system, delivered to the Canadian Post Office in January 1957. Despite a promising start and a great deal of international attention, spiraling costs and a change in government led to the project being canceled later that year. Technical developments pioneered for the Route Reference Computer were put to good use by Ferranti in several projects that followed over the next decade.

Beatrice Helen Worsley was a Canadian computer scientist, the first woman in the country to work in that profession. She received her Ph.D. degree from the University of Cambridge with Maurice Wilkes as adviser, the first Ph.D. granted in what would today be known as computer science. She wrote the first program to run on EDSAC, co-wrote the first compiler for Toronto's Ferranti Mark 1, wrote numerous papers in computer science, and taught computers and engineering at Queen's University and the University of Toronto for over 20 years before her death at the age of 50.

<i>Bertie the Brain</i> 1950 video game

Bertie the Brain is one of the first games developed in the early history of video games. It was built in Toronto by Josef Kates for the 1950 Canadian National Exhibition. The four meter tall computer allowed exhibition attendees to play a game of tic-tac-toe against an artificial intelligence. The player entered a move on a keypad in the form of a three-by-three grid, and the game played out on a grid of lights overhead. The machine had an adjustable difficulty level. After two weeks on display by Rogers Majestic, the machine was disassembled at the end of the exhibition and largely forgotten as a curiosity.

James Nairn Patterson "Pat" Hume was a Canadian professor and science educator who has been called "Canada's pioneer of computer programming". He was a professor of Physics and of Computer Science at the University of Toronto, and he served as the second Master of Massey College from 1981 to 1988.

References

  1. Bateman, Chris (Nov 12, 2016). "The story behind the first computer in Canada". spacing.ca. Retrieved Sep 11, 2019.