Ultrahyperbolic equation

Last updated

In the mathematical field of partial differential equations, the ultrahyperbolic equation is a partial differential equation for an unknown scalar function u of 2n variables x1, ..., xn, y1, ..., yn of the form

More generally, if a is any quadratic form in 2n variables with signature (n,n), then any PDE whose principal part is is said to be ultrahyperbolic. Any such equation can be put in the form 1. above by means of a change of variables. [1]

The ultrahyperbolic equation has been studied from a number of viewpoints. On the one hand, it resembles the classical wave equation. This has led to a number of developments concerning its characteristics, one of which is due to Fritz John: the John equation.

Walter Craig and Steven Weinstein recently (2008) proved that under a nonlocal constraint, the initial value problem is well-posed for initial data given on a codimension-one hypersurface. [2]

The equation has also been studied from the point of view of symmetric spaces, and elliptic differential operators. [3] In particular, the ultrahyperbolic equation satisfies an analog of the mean value theorem for harmonic functions.

Notes

  1. See Courant and Hilbert.
  2. Craig, Walter; Weinstein, Steven. "On determinism and well-posedness in multiple time dimensions". Proc. R. Soc. A vol. 465 no. 2110 3023-3046 (2008). Retrieved 5 December 2013.
  3. See, for instance, Helgasson.

Related Research Articles

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as

Partial differential equation Multivariable functions and their partial derivatives

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

Harmonic function Functions in mathematics

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f : UR, where U is an open subset of Rn, that satisfies Laplace's equation, that is,

Heat equation

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In mathematics, the symmetry of second derivatives refers to the possibility under certain conditions of interchanging the order of taking partial derivatives of a function

In mathematics and its applications, classical Sturm–Liouville theory is the theory of real second-order linear ordinary differential equations of the form:

In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region.

In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an underdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of r vector fields mesh into coordinate grids on r-dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds.

In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory.

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is

John's equation is an ultrahyperbolic partial differential equation satisfied by the X-ray transform of a function. It is named after Fritz John.

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

In mathematics, Hörmander's condition is a property of vector fields that, if satisfied, has many useful consequences in the theory of partial and stochastic differential equations. The condition is named after the Swedish mathematician Lars Hörmander.

In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let

In mathematics, the FBI transform or Fourier–Bros–Iagolnitzer transform is a generalization of the Fourier transform developed by the French mathematical physicists Jacques Bros and Daniel Iagolnitzer in order to characterise the local analyticity of functions on Rn. The transform provides an alternative approach to analytic wave front sets of distributions, developed independently by the Japanese mathematicians Mikio Sato, Masaki Kashiwara and Takahiro Kawai in their approach to microlocal analysis. It can also be used to prove the analyticity of solutions of analytic elliptic partial differential equations as well as a version of the classical uniqueness theorem, strengthening the Cauchy–Kowalevski theorem, due to the Swedish mathematician Erik Albert Holmgren (1872–1943).

In calculus, the differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable. The differential dy is defined by

In mathematics, in the field of harmonic analysis, an oscillatory integral operator is an integral operator of the form

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

Cauchy–Kowalevski theorem Existence and uniqueness theorem for certain partial differential equations

In mathematics, the Cauchy–Kovalevskaya theorem is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy (1842), and the full result by Sophie Kovalevskaya (1875).

References