Ultramicroelectrode

Last updated

An ultramicroelectrode (UME) is a working electrode used in a voltammetry. The small size of UME give them large diffusion layers and small overall currents. These features allow UME to achieve useful steady-state conditions and very high scan rates (V/s) with limited distortion. UME were developed independently by Wightman [1] and Fleischmann around 1980. [2] Small current at UME enables electrochemical measurements in low conductive media (organic solvents), where voltage drop associated with high solution resistance makes these experiments difficult for conventional electrodes. [3] Furthermore, small voltage drop at UME leads to a very small voltage distortion at the electrode-solution interface which allows using two-electrode setup in voltammetric experiment instead of conventional three-electrode setup.

Contents

Design

Ultramicroelectrodes are often defined as electrodes which are smaller than the diffusion layer achieved in a readily accessed experiment. A working definition is an electrode that has at least one dimension (the critical dimension) smaller than 25 μm. Platinum electrodes with a radius of 5 μm are commercially available and electrodes with critical dimension of 0.1 μm have been made. Electrodes with even smaller critical dimension have been reported in the literature, but exist mostly as proofs of concept. The most common UME is a disk shaped electrode created by embedding a thin wire in glass, resin, or plastic. The resin is cut and polished to expose a cross section of the wire. Other shapes, such as wires and rectangles, have also been reported. Carbon-fiber microelectrodes are fabricated with conductive carbon fibers sealed in glass capillary with exposed tips. These electrodes are frequently used with in vivo voltammetry.

Theory

Linear region

Every electrode has a range of scan rates called the linear region. The response to a reversible redox couple in the linear region is a "diffusion controlled peak" which can be modeled with the Cottrell equation. The upper limit of the useful linear region is bound by an excess of charging current combined with distortions created from large peak currents and associated resistance. The charging current scales linearly with scan rate while the peak current, which contains the useful information, scales with the square root of scan rate. As scan rates increase, the relative peak response diminishes. Some of the charge current can be mitigated with RC compensation and/or mathematically removed after the experiment. However, the distortions resulting from increased current and the associated resistance cannot be subtracted. These distortions ultimately limit the scan rate for which an electrode is useful. For example, a working electrode with a radius of 1.0 mm is not useful for experiments much greater than 500 mV/s.

Moving to an UME drops the currents being passed and thus greatly increases the useful sweep rate up to 106 V/s. These faster scan rates allow the investigation of electrochemical reaction mechanisms with much higher rates than can be explored with regular working electrodes. By adjusting the size of the working electrode an enormous kinetic range can be studied. For UME only the very fast reactions can be studied through peak current since the linear region only exists for UME at very high scan rates.

Steady-state region

At scan rates slower than those of the linear region is a region which is mathematically complex to model and rarely investigated. At even slower scan rates there is the steady-state region. In the steady-state region linear sweeps traces display reversible redox couple as steps rather than peaks. These steps can readily be modeled for meaningful data.

To access the steady-state region the scan rate must be dropped. As scan rates are slowed, the relative currents also drop at a given point reducing the reliability of the measurement. The low ratio of diffusion layer volume to electrode surface area means regular stationary electrodes can not be dropped low enough before their current measurements become unreliable. In contrast, the ratio of diffusion layer volume to electrode surface area is much higher for UME. When the scan rate of UME is dropped it quickly enters the steady-state regime at useful scan rates. Even though UME supply small total currents their steady-state currents are high compared to regular electrodes.

Rg Value

The Rg value which is defined as R/r which is the ratio between the radius of insulation sheet (R) and the radius of the conductive material (r or a). The Rg value is a method to evaluate the quality of the UME, where a smaller Rg value means there is less interference to the diffusion towards the conductive material resulting in a better or more sensitive electrode. The Rg value obtain either by a rough estimation from a microscope image (as long as the electrode was fabricated with an homogeneous wire with a known diameter) or by a direct calculation based on the steady state current (iss) obtained from a cyclic voltamogram based on the following equation: iss=knFaDC*

Where k is a geometric constant (disk, k = 4; hemispherical, k =2π), n is the number of electrons involved in the reaction, F is the Faraday constant (96 485 C eq−1), a is the radius of the electroactive surface, D is the diffusion coefficient of the redox species (Dferrocene methanol= 7.8 × 10−6 ; Druthenium hexamine = 8.7 × 10−6 cm2s−1) and C* is the concentration of dissolved redox species [4]

See also

Related Research Articles

Cyclic voltammetry

Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is reached in a CV experiment, the working electrode's potential is ramped in the opposite direction to return to the initial potential. These cycles of ramps in potential may be repeated as many times as needed. The current at the working electrode is plotted versus the applied voltage to give the cyclic voltammogram trace. Cyclic voltammetry is generally used to study the electrochemical properties of an analyte in solution or of a molecule that is adsorbed onto the electrode.

Differential pulse voltammetry (DPV) is a voltammetry method used to make electrochemical measurements and a derivative of linear sweep voltammetry or staircase voltammetry, with a series of regular voltage pulses superimposed on the potential linear sweep or stairsteps. The current is measured immediately before each potential change, and the current difference is plotted as a function of potential. By sampling the current just before the potential is changed, the effect of the charging current can be decreased.

Potentiostat

A potentiostat is the electronic hardware required to control a three electrode cell and run most electroanalytical experiments. A Bipotentiostat and polypotentiostat are potentiostats capable of controlling two working electrodes and more than two working electrodes, respectively.

Voltammetry

Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data for a voltammetric experiment comes in the form of a voltammagram which plots the current produced by the analyte versus the potential of the working electrode.

Chronoamperometry

Chronoamperometry is an electrochemical technique in which the potential of the working electrode is stepped and the resulting current from faradaic processes occurring at the electrode is monitored as a function of time. The functional relationship between current response and time is measured after applying single or double potential step to the working electrode of the electrochemical system. Limited information about the identity of the electrolyzed species can be obtained from the ratio of the peak oxidation current versus the peak reduction current. However, as with all pulsed techniques, chronoamperometry generates high charging currents, which decay exponentially with time as any RC circuit. The Faradaic current - which is due to electron transfer events and is most often the current component of interest - decays as described in the Cottrell equation. In most electrochemical cells this decay is much slower than the charging decay-cells with no supporting electrolyte are notable exceptions. Most commonly a three electrode system is used. Since the current is integrated over relatively longer time intervals, chronoamperometry gives a better signal to noise ratio in comparison to other amperometric techniques.

Polarography is a type of voltammetry where the working electrode is a dropping mercury electrode (DME) or a static mercury drop electrode (SMDE), which are useful for their wide cathodic ranges and renewable surfaces. It was invented in 1922 by Czech chemist Jaroslav Heyrovský, for which he won the Nobel prize in 1959.

In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.

Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The three main categories are potentiometry, coulometry, and voltammetry.

In electrochemistry, the Cottrell equation describes the change in electric current with respect to time in a controlled potential experiment, such as chronoamperometry. Specifically it describes the current response when the potential is a step function in time. It was derived by Frederick Gardner Cottrell in 1903. For a simple redox event, such as the ferrocene/ferrocenium couple, the current measured depends on the rate at which the analyte diffuses to the electrode. That is, the current is said to be "diffusion controlled." The Cottrell equation describes the case for an electrode that is planar but can also be derived for spherical, cylindrical, and rectangular geometries by using the corresponding laplace operator and boundary conditions in conjunction with Fick's second law of diffusion.

The working electrode is the electrode in an electrochemical system on which the reaction of interest is occurring. The working electrode is often used in conjunction with an auxiliary electrode, and a reference electrode in a three electrode system. Depending on whether the reaction on the electrode is a reduction or an oxidation, the working electrode is called cathodic or anodic, respectively. Common working electrodes can consist of materials ranging from inert metals such as gold, silver or platinum, to inert carbon such as glassy carbon, boron doped diamond or pyrolytic carbon, and mercury drop and film electrodes. Chemically modified electrodes are employed for the analysis of both organic and inorganic samples.

Squarewave voltammetry (SWV) is a form of linear potential sweep voltammetry that uses a combined square wave and staircase potential applied to a stationary electrode. It has found numerous applications in various fields, including within medicinal and various sensing communities.

In chemistry, an electrochemical reaction mechanism is the step by step sequence of elementary steps, involving at least one outer sphere electron transfer, by which an overall chemical change occurs.

A rotating disk electrode (RDE) is a hydrodynamic working electrode used in a three electrode system. The electrode rotates during experiments inducing a flux of analyte to the electrode. These working electrodes are used in electrochemical studies when investigating reaction mechanisms related to redox chemistry, among other chemical phenomena. The more complex rotating ring-disk electrode can be used as a rotating disk electrode if the ring is left inactive during the experiment.

Hydrodynamic voltammetry is a form of voltammetry in which the analyte solution flows relative to a working electrode. In many voltammetry techniques, the solution is intentionally left still to allow diffusion controlled mass transfer. When a solution is made to flow, through stirring or some other physical mechanism, it is very important to the technique to achieve a very controlled flux or mass transfer in order to obtain predictable results. These methods are types of electrochemical studies which use potentiostats to investigate reaction mechanisms related to redox chemistry among other chemical phenomenon.

Dropping mercury electrode Electrode made of mercury and used in polarography

The dropping mercury electrode (DME) is a working electrode made of mercury and used in polarography. Experiments run with mercury electrodes are referred to as forms of polarography even if the experiments are identical or very similar to a corresponding voltammetry experiment which uses solid working electrodes. Like other working electrodes these electrodes are used in electrochemical studies using three electrode systems when investigating reaction mechanisms related to redox chemistry among other chemical phenomena.

In cyclic voltammetry, the Randles–Sevcik equation describes the effect of scan rate on the peak current ip. For simple redox events such as the ferrocene/ferrocenium couple, ip depends not only on the concentration and diffusional properties of the electroactive species but also on scan rate.

Neopolarogram

The term neopolarogram refers to mathematical derivatives of polarograms or cyclic voltammograms that in effect deconvolute diffusion and electrochemical kinetics. This is achieved by analog or digital implementations of fractional calculus. The implementation of fractional derivative calculations by means of numerical methods is straight forward. The G1- and the RL0-algorithms are recursive methods to implement a numerical calculation of fractional differintegrals. Yet differintegrals are faster to compute in discrete fourier space using FFT.

Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics.

In electrochemistry, the diffusion layer, according to IUPAC, is defined as the "region in the vicinity of an electrode where the concentrations are different from their value in the bulk solution. The definition of the thickness of the diffusion layer is arbitrary because the concentration approaches asymptotically the value in the bulk solution". The diffusion layer thus depends on the diffusion coefficient (D) of the analyte and for voltammetric measurements on the scan rate (V/s). It is usually considered to be some multiple of (Dt)1/2. At slow scan rates, the diffusion layer is large, on the order of micrometers, whereas at fast scan rates the diffusion layer is nanometers in thickness. The relationship is described in part by the Cottrell equation.

In electrochemistry, protein film voltammetry is a technique for examining the behavior of proteins immobilized on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics.

References

  1. Wightman, R. Mark (August 1981). "Microvoltammetric electrodes". Analytical Chemistry. 53 (9): 1125A–1134A. doi:10.1021/ac00232a004.
  2. Heinze, Jurgen (September 1993). "Ultramicroelectrodes in Electrochemistry". Angewandte Chemie International Edition in English. 32 (9): 1268–1288. doi:10.1002/anie.199312681.
  3. Bond, A.M.; Fleischmann, M.; Robinson, J. (May 1984). "Electrochemistry in organic solvents without supporting electrolyte using platinum microelectrodes". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 168 (1–2): 299–312. doi:10.1016/0368-1874(84)87106-3.
  4. Danis, Laurance; Polcari, Davis; Kwan, Annie; Gateman, Samantha Michelle; Mauzeroll, Janine (January 2015). "Fabrication of Carbon, Gold, Platinum, Silver, and Mercury Ultramicroelectrodes with Controlled Geometry". Analytical Chemistry. 87 (5): 2565–2569. doi:10.1021/ac503767n. PMID   25629426.