Unified Theories of Cognition

Last updated

Unified Theories of Cognition is a 1990 book by Allen Newell. [1] Newell argues for the need of a set of general assumptions for cognitive models that account for all of cognition: a unified theory of cognition, or cognitive architecture. The research started by Newell on unified theories of cognition represents a crucial element of divergence with respect to the vision of his long-term collaborator, and AI pioneer, Herbert Simon for what concerns the future of artificial intelligence research. Antonio Lieto recently drew attention to such a discrepancy, [2] by pointing out that Herbert Simon decided to focus on the construction of single simulative programs (or microtheories/"middle-range" theories) that were considered a sufficient mean to enable the generalisation of “unifying” theories of cognition (i.e. according to Simon the "unification" was assumed to be derivable from a body of qualitative generalizations coming from the study of individual simulative programs). Newell, on the other hand, didn’t consider the construction of single simulative microtheories a sufficient mean to enable the generalisation of “unifying” theories of cognition and, in fact, started the enterprise of studying and developing integrated and multi-tasking intelligence via cognitive architectures that would have led to the development of the Soar cognitive architecture.

Contents

Contents

Newell argues that the mind functions as a single system. He also claims the established cognitive models are vastly underdetermined by experimental data. By cognition, Newell means:

After arguing in favor of the development of unified theories of cognition, Newell puts forward a list of constraints to any unified theory, in that a theory should explain how a mind does the following:

  1. Behave flexibly as a function of the environment
  2. Exhibit adaptive (rational, goal-oriented) behavior
  3. Operate in real time
  4. Operate in a rich, complex, detailed environment (Perceive an immense amount of changing detail; use vast amounts of knowledge; and control a motor system of many degrees of freedom)
  5. Use symbols and abstractions
  6. Use language, both natural and artificial
  7. Learn from the environment and from experience
  8. Acquire capabilities through development
  9. Operate autonomously, but within a social community
  10. Be self-aware and have a sense of self
  11. Be realizable as a neural system
  12. Be construable by an embryological growth process
  13. Arise through evolution

Newell's secondary task is to put forward the cognitive architecture Soar as an implementation of a UTC that meets the constraints above. Other efforts at unified theories of cognition cited in the book include ACT-R and the human processor model.

See also

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Herbert A. Simon</span> American political scientist, economist, sociologist, and psychologist

Herbert Alexander Simon was an American political scientist whose work also influenced the fields of computer science, economics, and cognitive psychology. His primary research interest was decision-making within organizations and he is best known for the theories of "bounded rationality" and "satisficing". He received the Nobel Memorial Prize in Economic Sciences in 1978 and the Turing Award in computer science in 1975. His research was noted for its interdisciplinary nature and spanned across the fields of cognitive science, computer science, public administration, management, and political science. He was at Carnegie Mellon University for most of his career, from 1949 to 2001, where he helped found the Carnegie Mellon School of Computer Science, one of the first such departments in the world.

Bounded rationality is the idea that rationality is limited when individuals make decisions, and under these limitations, rational individuals will select a decision that is satisfactory rather than optimal.

<span class="mw-page-title-main">Autopoiesis</span> Systems concept which entails automatic reproduction and maintenance

The term autopoiesis refers to a system capable of producing and maintaining itself by creating its own parts. The term was introduced in the 1972 publication Autopoiesis and Cognition: The Realization of the Living by Chilean biologists Humberto Maturana and Francisco Varela to define the self-maintaining chemistry of living cells.

<span class="mw-page-title-main">Allen Newell</span> American cognitive scientist

Allen Newell was an American researcher in computer science and cognitive psychology at the RAND Corporation and at Carnegie Mellon University's School of Computer Science, Tepper School of Business, and Department of Psychology. He contributed to the Information Processing Language (1956) and two of the earliest AI programs, the Logic Theorist (1956) and the General Problem Solver (1957). He was awarded the ACM's A.M. Turing Award along with Herbert A. Simon in 1975 for their contributions to artificial intelligence and the psychology of human cognition.

A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks. In terms of information processing, cognitive modeling is modeling of human perception, reasoning, memory and action.

In the history of artificial intelligence, neat and scruffy are two contrasting approaches to artificial intelligence (AI) research. The distinction was made in the 70s and was a subject of discussion until the middle 80s.

Soar is a cognitive architecture, originally created by John Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University. It is now maintained and developed by John Laird's research group at the University of Michigan.

<span class="mw-page-title-main">ACT-R</span>

ACT-R is a cognitive architecture mainly developed by John Robert Anderson and Christian Lebiere at Carnegie Mellon University. Like any cognitive architecture, ACT-R aims to define the basic and irreducible cognitive and perceptual operations that enable the human mind. In theory, each task that humans can perform should consist of a series of these discrete operations.

A cognitive architecture refers to both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. The formalized models can be used to further refine a comprehensive theory of cognition and as a useful artificial intelligence program. Successful cognitive architectures include ACT-R and SOAR. The research on cognitive architectures as software instantiation of cognitive theories was initiated by Allen Newell in 1990.

Computational cognition is the study of the computational basis of learning and inference by mathematical modeling, computer simulation, and behavioral experiments. In psychology, it is an approach which develops computational models based on experimental results. It seeks to understand the basis behind the human method of processing of information. Early on computational cognitive scientists sought to bring back and create a scientific form of Brentano's psychology.

The cognitive revolution was an intellectual movement that began in the 1950s as an interdisciplinary study of the mind and its processes, from which emerged a new field known as cognitive science. The preexisting relevant fields were psychology, linguistics, computer science, anthropology, neuroscience, and philosophy. The approaches used were developed within the then-nascent fields of artificial intelligence, computer science, and neuroscience. In the 1960s, the Harvard Center for Cognitive Studies and the Center for Human Information Processing at the University of California, San Diego were influential in developing the academic study of cognitive science. By the early 1970s, the cognitive movement had surpassed behaviorism as a psychological paradigm. Furthermore, by the early 1980s the cognitive approach had become the dominant line of research inquiry across most branches in the field of psychology.

A physical symbol system takes physical patterns (symbols), combining them into structures (expressions) and manipulating them to produce new expressions.

Cognitive Robotics or Cognitive Technology is a subfield of robotics concerned with endowing a robot with intelligent behavior by providing it with a processing architecture that will allow it to learn and reason about how to behave in response to complex goals in a complex world. Cognitive robotics may be considered the engineering branch of embodied cognitive science and embodied embedded cognition, consisting of Robotic Process Automation, Artificial Intelligence, Machine Learning, Deep Learning, Optical Character Recognition, Image Processing, Process Mining, Analytics, Software Development and System Integration.

Embodied cognitive science is an interdisciplinary field of research, the aim of which is to explain the mechanisms underlying intelligent behavior. It comprises three main methodologies: the modeling of psychological and biological systems in a holistic manner that considers the mind and body as a single entity; the formation of a common set of general principles of intelligent behavior; and the experimental use of robotic agents in controlled environments.

Computational representational understanding of mind (CRUM) is a hypothesis in cognitive science which proposes that thinking is performed by computations operating on representations. This hypothesis assumes that the mind has mental representations analogous to data structures and computational procedures analogous to algorithms, such that computer programs using algorithms applied to data structures can model the mind and its processes..

CHREST is a symbolic cognitive architecture based on the concepts of limited attention, limited short-term memories, and chunking. The architecture takes into low-level aspects of cognition such as reference perception, long and short-term memory stores, and methodology of problem-solving and high-level aspects such as the use of strategies. Learning, which is essential in the architecture, is modelled as the development of a network of nodes (chunks) which are connected in various ways. This can be contrasted with Soar and ACT-R, two other cognitive architectures, which use productions for representing knowledge. CHREST has often been used to model learning using large corpora of stimuli representative of the domain, such as chess games for the simulation of chess expertise or child-directed speech for the simulation of children's development of language. In this respect, the simulations carried out with CHREST have a flavour closer to those carried out with connectionist models than with traditional symbolic models.

<span class="mw-page-title-main">CLARION (cognitive architecture)</span>

Connectionist Learning with Adaptive Rule Induction On-line (CLARION) is a computational cognitive architecture that has been used to simulate many domains and tasks in cognitive psychology and social psychology, as well as implementing intelligent systems in artificial intelligence applications. An important feature of CLARION is the distinction between implicit and explicit processes and focusing on capturing the interaction between these two types of processes. The system was created by the research group led by Ron Sun.

Logic Theorist is a computer program written in 1956 by Allen Newell, Herbert A. Simon, and Cliff Shaw. It was the first program deliberately engineered to perform automated reasoning, and has been described as "the first artificial intelligence program". Logic Theorist proved 38 of the first 52 theorems in chapter two of Whitehead and Bertrand Russell's Principia Mathematica, and found new and shorter proofs for some of them.

In the philosophy of artificial intelligence, GOFAI is classical symbolic AI, as opposed to other approaches, such as neural networks, situated robotics, narrow symbolic AI or neuro-symbolic AI. The term was coined by philosopher John Haugeland in his 1985 book Artificial Intelligence: The Very Idea.

References

  1. Newell, Allen. 1990. Unified Theories of Cognition. Harvard University Press, Cambridge, Massachusetts.
  2. Lieto, Antonio (2021). Cognitive Design for Artificial Minds. London, UK: Routledge, Taylor & Francis. ISBN   9781138207929.

Further reading