Union-closed sets conjecture

Last updated
Unsolved problem in mathematics:

If any two sets in some finite family of sets have a union that also belongs to the family, must some element belong to at least half of the sets in the family?

Contents

The union-closed sets conjecture, also known as Frankl’s conjecture, is an open problem in combinatorics posed by Péter Frankl in 1979. A family of sets is said to be union-closed if the union of any two sets from the family belongs to the family. The conjecture states:

For every finite union-closed family of sets, other than the family containing only the empty set, there exists an element that belongs to at least half of the sets in the family.

Professor Timothy Gowers has called this "one of the best known open problems in combinatorics" and has said that the conjecture "feels as though it ought to be easy (and as a result has attracted a lot of false proofs over the years). A good way to understand why it isn't easy is to spend an afternoon trying to prove it. That clever averaging argument you had in mind doesn't work ..." [1]

Example

The family of sets

consists of five different sets and is union-closed. The element is contained in three of the five sets (and so is the element ), thus the conjecture holds in this case.

Basic results

It is easy to show that if a union-closed family contains a singleton (as in the example above), then the element must occur in at least half of the sets of the family.

If there is a counterexample to the conjecture, then there is also a counterexample consisting only of finite sets. Therefore, without loss of generality, we will assume that all sets in the given union-closed family are finite. [2]

Given a finite non-empty set , the power set consisting of all subsets of is union-closed. Each element of is contained in exactly half of the subsets of . Therefore, in general we cannot ask for an element contained in more than half of the sets of the family: the bound of the conjecture is sharp.

Equivalent forms

Intersection formulation

The union-closed set conjecture is true if and only if a set system which is intersection-closed contains an element of in at most half of the sets of , where is the universe set, i.e. the union of all members of the system .

The following facts show the equivalence.

Firstly, we show that a set system is union-closed if and only if its complement is intersection-closed.

Lemma 1. If is a union-closed family of sets with universe , the family of complement sets to sets in is closed under intersection.

Proof. We define the complement of the set system as .

Let , be arbitrary sets in and so and are both in . Since is union-closed, is in , and therefore the complement of , is in , the elements in neither , nor .

And this is exactly the intersection of the complements of and , . Therefore, is union-closed if and only if the complement of , is intersection closed.

Secondly, we show that if a set system contains an element in at least half the sets, then its complement has an element in at most half.

Lemma 2. A set system contains an element in half of its sets if and only if the complement set system , contains an element in at most half of its sets. Proof. Trivial.

Therefore, if is a union-closed family of sets, the family of complement sets to sets in relative to the universe is closed under intersection, and an element that belongs to at least half of the sets of belongs to at most half of the complement sets. Thus, an equivalent form of the conjecture (the form in which it was originally stated) is that, for any intersection-closed family of sets that contains more than one set, there exists an element that belongs to at most half of the sets in the family.

Lattice formulation

Although stated above in terms of families of sets, Frankl's conjecture has also been formulated and studied as a question in lattice theory. A lattice is a partially ordered set in which for two elements x and y there is a unique greatest element less than or equal to both of them (the meet of x and y) and a unique least element greater than or equal to both of them (the join of x and y). The family of all subsets of a set S, ordered by set inclusion, forms a lattice in which the meet is represented by the set-theoretic intersection and the join is represented by the set-theoretic union; a lattice formed in this way is called a Boolean lattice. The lattice-theoretic version of Frankl's conjecture is that in any finite lattice there exists an element x that is not the join of any two smaller elements, and such that the number of elements greater than or equal to x totals at most half the lattice, with equality only if the lattice is a Boolean lattice. As Abe (2000) shows, this statement about lattices is equivalent to the Frankl conjecture for union-closed sets: each lattice can be translated into a union-closed set family, and each union-closed set family can be translated into a lattice, such that the truth of the Frankl conjecture for the translated object implies the truth of the conjecture for the original object. This lattice-theoretic version of the conjecture is known to be true for several natural subclasses of lattices [3] but remains open in the general case.

Graph-theoretic formulation

Another equivalent formulation of the union-closed sets conjecture uses graph theory. In an undirected graph, an Independent set is a set of vertices no two of which are adjacent to each other; an independent set is maximal if it is not a subset of a larger independent set. In any graph, the "heavy" vertices that appear in more than half of the maximal independent sets must themselves form an independent set. So, if the graph is non-empty, there always exists at least one non-heavy vertex, a vertex that appears in at most half of the maximal independent sets. The graph formulation of the union-closed sets conjecture states that every finite non-empty graph contains two adjacent non-heavy vertices. It is automatically true when the graph contains an odd cycle, because the independent set of all heavy vertices cannot cover all the edges of the cycle. Therefore, the more interesting case of the conjecture is for bipartite graphs, which have no odd cycles. Another equivalent formulation of the conjecture is that, in every bipartite graph, there exist two vertices, one on each side of the bipartition, such that each of these two vertices belongs to at most half of the graph's maximal independent sets. This conjecture is known to hold for chordal bipartite graphs, bipartite series–parallel graphs, and bipartite graphs of maximum degree three. [4]

Partial results

The conjecture has been proven for many special cases of union-closed set families. In particular, it is known to be true for

In November 2022, a preprint was posted claiming a proof of the following statement: [10] [11]

For every union-closed family, other than the family containing only the empty set, there exists an element that belongs to at least a fraction of 0.01 of the sets in the family.

The proof used probabilistic and entropy methods to obtain such a bound. A conjecture within this paper implied a possible improvement to a lower bound fraction of . The union-closed sets conjecture itself corresponds to the fraction .

A few days later, three preprints were posted that established the lower bound fraction of . [12] These were shortly followed by two other preprints increasing the lower bound to . [13] [14]

History

Péter Frankl stated the conjecture in terms of intersection-closed set families in 1979, and so the conjecture is usually credited to him and is sometimes referred to as the Frankl conjecture. The earliest publication of the union-closed version of the conjecture appears to be by Duffus (1985). A history of the work on the conjecture up to 2013 was published by Bruhn & Schaudt (2015).

Notes

  1. Timothy Gowers, Tweet on 17 November 2022
  2. Bruhn & Schaudt (2015)
  3. Abe (2000); Poonen (1992); Reinhold (2000)
  4. Bruhn et al. (2015).
  5. Roberts & Simpson (2010).
  6. Bošnjak & Marković (2008), improving previous bounds by Morris (2006), Lo Faro (1994) and others.
  7. Sarvate & Renaud (1989), since rediscovered by several other authors. If a one-element or two-element set S exists, some element of S belongs to at least half the sets in the family, but the same property does not hold for three-element sets, due to counterexamples of Sarvate, Renaud, and Ronald Graham.
  8. Karpas (2017).
  9. Tian (2021)
  10. Gilmer (2022)
  11. "Long Out of Math, an AI Programmer Cracks a Pure Math Problem". Quanta Magazine. 2023-01-03. Retrieved 2023-01-03.
  12. Chase & Lovett (2022); Alweiss, Huang & Sellke (2022); Sawin (2022)
  13. Yu (2022)
  14. Cambie (2022)

Related Research Articles

<span class="mw-page-title-main">Complete graph</span> Graph in which every two vertices are adjacent

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges.

In mathematics, Hall's marriage theorem, proved by Philip Hall, is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist:

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

<span class="mw-page-title-main">Erdős–Ko–Rado theorem</span> Upper bound on intersecting set families

In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of extremal set theory.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

<span class="mw-page-title-main">Antimatroid</span> Mathematical system of orderings or sets

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth.

<span class="mw-page-title-main">Convex polytope</span> Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

<span class="mw-page-title-main">Kneser graph</span> Graph whose vertices correspond to combinations of a set of n elements

In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

<span class="mw-page-title-main">Clique complex</span> Abstract simplicial complex describing a graphs cliques

Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.

In graph theory, a partial cube is a graph that is an isometric subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels. Such a labeling is called a Hamming labeling; it represents an isometric embedding of the partial cube into a hypercube.

In mathematics, a differential poset is a partially ordered set satisfying certain local properties. This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice, many of whose combinatorial properties are shared by all differential posets. In addition to Young's lattice, the other most significant example of a differential poset is the Young–Fibonacci lattice.

<span class="mw-page-title-main">Half graph</span> Type of graph in mathematics

In graph theory, a branch of mathematics, a half graph is a special type of bipartite graph. These graphs are called the half graphs because they have approximately half of the edges of a complete bipartite graph on the same vertices. The name was given to these graphs by Paul Erdős and András Hajnal.

<span class="mw-page-title-main">Ruzsa–Szemerédi problem</span>

In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than by a slowly-growing factor.

Hunter Snevily (1956–2013) was an American mathematician with expertise and contributions in Set theory, Graph theory, Discrete geometry, and Ramsey theory on the integers.

<span class="mw-page-title-main">Big-line-big-clique conjecture</span> Unsolved problem in discrete geometry

The big-line-big-clique conjecture is an unsolved problem in discrete geometry, stating that finite sets of many points in the Euclidean plane either have many collinear points, or they have many points that are all mutually visible to each other.

References