Ure2p

Last updated
Transcriptional regulator URE2
Identifiers
Organism Saccharomyces cerevisiae strain S288c
SymbolURE2
Entrez 855492
HomoloGene 22221
RefSeq (mRNA) NM_001183067.1
RefSeq (Prot) NP_014170.1
UniProt P23202
Other data
Chromosome XIV: 0.22 - 0.22 Mb
Search for
Structures Swiss-model
Domains InterPro

Ure2p is a yeast protein that represses transcription of genes involved in nitrogen catabolism. It specifically regulates the utilization of poor nitrogen sources in the presence of preferred nutrients such as ammonia or glutamine. Ure2p is one of the few yeast proteins that are known to be prions. At low frequency the protein adopts an alternative conformation that is auto-catalytic and self-propagating. Yeast cells that carry the protein in the prion conformation are designated as [URE3]. Autocatalytic conversion of Ure2p into the inactive prion form of the protein results in a loss of repression of nitrogen catabolic genes.

Related Research Articles

<span class="mw-page-title-main">Prion</span> Pathogenic type of misfolded protein

A prion is a misfolded protein that can transmit its misfolded shape onto normal variants of the same protein and trigger cellular death. Prions are the causative agent of prion diseases known as transmissible spongiform encephalopathies (TSEs) that are transmissible, fatal neurodegenerative diseases in humans and other animals. The proteins may misfold sporadically, due to genetic mutations, or by exposure to an already misfolded protein. The consequent abnormal three-dimensional structure confers on them the ability to cause misfolding of other proteins.

<span class="mw-page-title-main">Central dogma of molecular biology</span> Explanation of the flow of genetic information within a biological system

The central dogma of molecular biology is an explanation of the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:

The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information here means the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.

<span class="mw-page-title-main">Susan Lindquist</span> American geneticist

Susan Lee Lindquist, ForMemRS was an American professor of biology at MIT specializing in molecular biology, particularly the protein folding problem within a family of molecules known as heat-shock proteins, and prions. Lindquist was a member and former director of the Whitehead Institute and was awarded the National Medal of Science in 2010.

<span class="mw-page-title-main">Calmodulin</span> Calcium Modulated Regulatory Protein

Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the binding of Ca2+ is required for the activation of calmodulin. Once bound to Ca2+, calmodulin acts as part of a calcium signal transduction pathway by modifying its interactions with various target proteins such as kinases or phosphatases.

Transmissible spongiform encephalopathies (TSEs) also known as prion diseases, are a group of progressive and fatal conditions that are associated with prions and affect the brain and nervous system of many animals, including humans, cattle, and sheep. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a Spiroplasma infection. Mental and physical abilities deteriorate and many tiny holes appear in the cortex causing it to appear like a sponge when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.

<span class="mw-page-title-main">Amyloid</span> Insoluble protein aggregate with a fibrillar morphology

Amyloids are aggregates of proteins characterised by a fibrillar morphology of typically 7–13 nm in diameter, a β-sheet secondary structure and ability to be stained by particular dyes, such as Congo red. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal structure and physiological functions (misfolding) and form fibrous deposits within and around cells. These protein misfolding and deposition processes disrupt the healthy function of tissues and organs.

<span class="mw-page-title-main">Structural inheritance</span>

Structural inheritance or cortical inheritance is the transmission of an epigenetic trait in a living organism by a self-perpetuating spatial structures. This is in contrast to the transmission of digital information such as is found in DNA sequences, which accounts for the vast majority of known genetic variation.

Sup35p is the Saccharomyces cerevisiae eukaryotic translation release factor. More specifically, it is the yeast eukaryotic release factor 3 (eRF3), which forms the translation termination complex with eRF1. This complex recognizes and catalyzes the release of the nascent polypeptide chain when the ribosome encounters a stop codon. While eRF1 recognizes stop codons, eRF3 facilitates the release of the polypeptide chain through GTP hydrolysis.

<span class="mw-page-title-main">Hop (protein)</span> Protein-coding gene in the species Homo sapiens

Hop, occasionally written HOP, is an abbreviation for Hsp70-Hsp90 Organizing Protein. It functions as a co-chaperone which reversibly links together the protein chaperones Hsp70 and Hsp90.

<span class="mw-page-title-main">Evolutionary capacitance</span> Evolutionary biology hypothesis

Evolutionary capacitance is the storage and release of variation, just as electric capacitors store and release charge. Living systems are robust to mutations. This means that living systems accumulate genetic variation without the variation having a phenotypic effect. But when the system is disturbed, robustness breaks down, and the variation has phenotypic effects and is subject to the full force of natural selection. An evolutionary capacitor is a molecular switch mechanism that can "toggle" genetic variation between hidden and revealed states. If some subset of newly revealed variation is adaptive, it becomes fixed by genetic assimilation. After that, the rest of variation, most of which is presumably deleterious, can be switched off, leaving the population with a newly evolved advantageous trait, but no long-term handicap. For evolutionary capacitance to increase evolvability in this way, the switching rate should not be faster than the timescale of genetic assimilation.

Reed B. Wickner is an American yeast geneticist. In 1994 he proposed that the [PSI+] and [URE3] phenotypes in Saccharomyces cerevisiae, a form of budding yeast, were caused by prion forms of native proteins - specifically, the Sup35p and Ure2p proteins, respectively.

<span class="mw-page-title-main">Major prion protein</span> Protein involved in multiple prion diseases

Major prion protein(PrP) is encoded in the human body by the PRNP gene also known as CD230 (cluster of differentiation 230). Expression of the protein is most predominant in the nervous system but occurs in many other tissues throughout the body.

<span class="mw-page-title-main">Fungal prion</span> Prion that infects fungal hosts

A fungal prion is a prion that infects hosts which are fungi. Fungal prions are naturally occurring proteins that can switch between multiple, structurally distinct conformations, at least one of which is self-propagating and transmissible to other prions. This transmission of protein state represents an epigenetic phenomenon where information is encoded in the protein structure itself, instead of in nucleic acids. Several prion-forming proteins have been identified in fungi, primarily in the yeast Saccharomyces cerevisiae. These fungal prions are generally considered benign, and in some cases even confer a selectable advantage to the organism.

<span class="mw-page-title-main">Proteinopathy</span> Medical condition

In medicine, proteinopathy, or proteopathy, protein conformational disorder, or protein misfolding disease, is a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body. Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way or they can lose their normal function. The proteinopathies include such diseases as Creutzfeldt–Jakob disease and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, multiple system atrophy, and a wide range of other disorders. The term proteopathy was first proposed in 2000 by Lary Walker and Harry LeVine.

CPEB, or cytoplasmic polyadenylation element binding protein, is a highly conserved RNA-binding protein that promotes the elongation of the polyadenine tail of messenger RNA. CPEB most commonly activates the target RNA for translation, but can also act as a repressor, dependent on its phosphorylation state. In animals, CPEB is expressed in several alternative splicing isoforms that are specific to particular tissues and functions, including the self-cleaving Mammalian CPEB3 ribozyme. CPEB was first identified in Xenopus oocytes and associated with meiosis; a role has also been identified in the spermatogenesis of Caenorhabditis elegans.

<span class="mw-page-title-main">PRND</span> Protein-coding gene in the species Homo sapiens

Prion protein 2 (dublet), also known as PRND, or Doppel protein, is a protein which in humans is encoded by the PRND gene.

<span class="mw-page-title-main">Guanidinium chloride</span> Chemical compound

Guanidinium chloride or guanidine hydrochloride, usually abbreviated GdmCl and sometimes GdnHCl or GuHCl, is the hydrochloride salt of guanidine.

NatA acetyltransferase(Nα acetyltransferase), is an enzyme that serves to catalyze the addition of acetyl groups to various proteins emerging from the ribosome. Upon translation, the NatA binds to the ribosome and then "stretches" to the front end of the forming, or nascent, polypeptide, where it adds this acetyl group. This acetyl group is added to the front end, or N-terminus of the new protein.

Ure2, or Ure2p, is a yeast protein encoded by a gene known as URE2. The Ure2 protein can also form a yeast prion known as [URE3]. When Ura2p is expressed at high levels in yeast, it will readily convert from its native protein conformation into an aggregate known as an amyloid. [URE3], along with [PSI+], were both determined by Wickner (1994) to meet the genetic definition of a yeast prion.

In molecular biology, the Ure2 internal ribosome entry site (IRES) is an RNA element present in the 5' UTR of the mRNA of Ure2. It allows 5' cap- and eIF4E-independent translation of an N-terminally truncated form of Ure2. This truncated form lacks the prion-forming domain. It is a 104 nucleotide region, smaller than most viral IRES elements, which forms a stem-loop structure. EIF2A represses this IRES resulting in an inhibition of translation of the N-terminally truncated Ure2.

References