VIMCAS

Last updated

VIMCAS, standing for Vertical Interval Multiple Channel Audio System, is a dual-channel Sound-in-Syncs mechanism for transmitting digitally encoded audio in a composite video analogue television signal.

Contents

Invented by Australian company IRT in the 1980s, the basic concept of VIMCAS is to transmit two channels of PCM-encoded (i.e. digital) audio during the vertical blanking interval of a composite video signal. [1] The encoded audio was transmitted over 6 horizontal scan lines during that interval, the digitally encoded signal being placed onto a series of mid-grey pedestals, in much the same way that the colour subcarrier is placed on top of the monochrome signal. [1] [2]

As with the colour subcarrier, there is 4.7kHz bandwidth, so six lines would provide 28kHz of bandwidth (actually slightly less, there being a deliberate redundancy between the final packet of encoded audio on one line and the first packet of encoded audio on the next line to avoid signal corruption). [1] [3] This could be used as a pair of 14kHz channels for stereo audio, or as separate channels to carry dual-language transmissions. [1] In outside broadcast (OB) work, where VIMCAS was used from the OB site back to the studio, it could be used for separate audio channels where one would be effects (i.e. the ambient sound of a sports match) and the other would be the main audio (e.g. the voice of the commentator), or alternatively with the effects audio carried by VIMCAS and the main audio carried as NICAM 728. [4] [2]

To fit into the available bandwidth, the audio signal would first be companded and limited before being sampled for PCM encoding. [1] [3] The encoded signal would be transmitted in the six scanlines in time compressed form, i.e. much faster than its actual speed. [1] Decoding was simply the reverse process, with 100ms of audio (at a time) stored in the transmitted digital form into a digital memory and played out from that memory at original speed through a digital-to-analogue converter, with appropriate timing circuits to synchronize this playout with the accompanying video. [1] [3]

A reduced version, using just one scan line instead of six and thus providing narrower bandwidth, was called VISCAS (Vertical Interval Single Channel Audio System), which was good enough for talkback between the studio and the OB or foldback. [5]

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">NTSC</span> Analog television system

NTSC is the first American standard for analog television, published in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">Composite video</span> Analog video signal format

Composite video is an analog video format that typically carries a 525 or 625 line signal on a single channel, unlike the higher-quality S-Video and the even higher-quality component video.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

Multichannel Television Sound (MTS) is the method of encoding three additional audio channels into analog 4.5 MHz audio carriers on System M and System N. It was developed by the Broadcast Television Systems Committee, an industry group, and sometimes known as BTSC as a result.

<span class="mw-page-title-main">Serial digital interface</span> Family of digital video interfaces

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.

Near Instantaneous Companded Audio Multiplex (NICAM) is an early form of lossy compression for digital audio. It was originally developed in the early 1970s for point-to-point links within broadcasting networks. In the 1980s, broadcasters began to use NICAM compression for transmissions of stereo TV sound to the public.

<span class="mw-page-title-main">576i</span> Standard-definition video mode

576i is a standard-definition digital video mode, originally used for digitizing analogue television in most countries of the world where the utility frequency for electric power distribution is 50 Hz. Because of its close association with the legacy colour encoding systems, it is often referred to as PAL, PAL/SECAM or SECAM when compared to its 60 Hz NTSC-colour-encoded counterpart, 480i.

Subsidiary Communications Authorization (SCA) in the United States, and Subsidiary Communications Multiplex Operation (SCMO) in Canada, is a subcarrier on a radio station, allowing the station to broadcast additional services as part of its signal.

A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40–60 miles depending on the height of transmitter station.

Dolby Digital Plus, also known as Enhanced AC-3, is a digital audio compression scheme developed by Dolby Labs for the transport and storage of multi-channel digital audio. It is a successor to Dolby Digital (AC-3), and has a number of improvements over that codec, including support for a wider range of data rates, an increased channel count, and multi-program support, as well as additional tools (algorithms) for representing compressed data and counteracting artifacts. Whereas Dolby Digital (AC-3) supports up to five full-bandwidth audio channels at a maximum bitrate of 640 kbit/s, E-AC-3 supports up to 15 full-bandwidth audio channels at a maximum bitrate of 6.144 Mbit/s.

The 405-line monochrome analogue television broadcasting system was the first fully electronic television system to be used in regular broadcasting. The number of television lines influences the image resolution, or quality of the picture.

SMPTE 292 is a digital video transmission line standard published by the Society of Motion Picture and Television Engineers (SMPTE). This technical standard is usually referred to as HD-SDI; it is part of a family of standards that define a Serial Digital Interface based on a coaxial cable, intended to be used for transport of uncompressed digital video and audio in a television studio environment.

Ancillary data is data that has been added to given data and uses the same form of transport. Common examples are cover art images for media files or streams, or digital data added to radio or television broadcasts.

Sound-in-Syncs is a method of multiplexing sound and video signals into a channel designed to carry video, in which data representing the sound is inserted into the line synchronising pulse of an analogue television waveform. This is used on point-to-point links within broadcasting networks, including studio/transmitter links (STL). It is not used for broadcasts to the public.

<span class="mw-page-title-main">CCIR System B</span> 625-line analog television transmission format

CCIR System B was the 625-line VHF analog broadcast television system which at its peak was adopted by more than one hundred countries, either with PAL or SECAM colour. It is usually associated with CCIR System G for UHF broadcasts.

CCIR System A was the 405-line analog broadcast television system adopted in the UK and Ireland. System A service started in 1936 and was discontinued in 1985.

<span class="mw-page-title-main">CCIR System I</span> 625-line analogue TV transmission format

CCIR System I is an analogue broadcast television system. It was first used in the Republic of Ireland starting in December 1961 as the 625-line broadcasting standard to be used on VHF Band I and Band III, sharing Band III with 405-line System A signals radiated in the north and east of the country. The Republic of Ireland has (slowly) extended its use of System I onto the UHF bands.

AES50 is an Audio over Ethernet protocol for multichannel digital audio. It is defined in the AES50-2011 standard for High-resolution multi-channel audio interconnection (HRMAI).

References

Sources

  • Lewis, Geoffrey E. (March 1988). "Dual-Channel TV Sound Systems" (PDF). Television. Vol. 3, no. 5. IPC Magazines Ltd.
    • Republished as: Lewis, Geoffrey E. (2014-05-12). "Television and Radio Audio Channels". Communication Services via Satellite: A Handbook for Design, Installation and Service Engineers. Elsevier. ISBN   9781483183756.
  • Anderson, Gordon (2012-11-12). "Sound in Syncs". In Tozer, E. P. J. (ed.). Broadcast Engineer's Reference Book. CRC Press. ISBN   9781136024184.
  • Bunney, Roger (December 1996). "Long-distance television" (PDF). Television. Vol. 47, no. 2. IPC Magazines Ltd.
  • "Support Products: Pinzone Communications" (PDF). Broadcast Engineering. Vol. 30, no. 6. June 1988.