Vejocalcin

Last updated
Vejocalcin
Vejocalcin.jpg
3-dimensional modelling of Vejocalcin toxin. [1]
Names and Taxonomy
Recommended nameVejocalcin
Short nameVjCa
Organism Vaejovis mexicanus
Taxonomic Identifier 993612 [NCBI]
Taxonomic Lineage Vaejovis
Family and Domains
Domain Knottin
Sequence SimilaritiesScorpion Calcin Family
InterPro IPR012632
Pfam PF08099
PROSITE PS60028
Identifiers
UniProt P0DPT1

Vejocalcin (VjCa, also called Vejocalcine) is a toxin from the venom of the Mexican scorpion Vaejovis mexicanus. Vejocalcin is a member of the calcin family of toxins. It acts as a cell-penetrating peptide (CPP); it binds with high affinity and specificity to skeletal ryanodine receptor 1 (RYR1) of the sarcoplasmic reticulum, thereby triggering calcium release from intracellular Ca2+ stores.

Contents

Source and etymology

Vejocalcin is produced by Vaejovis mexicanus, a scorpion endemic to North and Central America. [2] While Vaejovis mexicanus was originally described in 1836, [3] vejocalcin was only isolated in 2016. This toxin was named after the scorpion that produces the peptide as well as its structural similarity to other toxins of the scorpion calcin family. [1]

Chemistry

Homology and family

On the basis of its amino acid structure, vejocalcin belongs to the family of scorpion calcin toxins, a group of selective, high-affinity membrane-permeable ligands of RyRs. Vejocalcin shares significant sequence similarity with other members of this family. [1]

Structure

Vejocalcin has a molecular mass of approximately 3.8 kDa and an isoelectric point of 9.3. [1]

Physical and chemical characteristics of vejocalcin [1]
FormulaAmino AcidsMolecular MassMolecular VolumeNegatively charged residuesPositively charged residues
C149H254N56O47S6333,774.42,692.73 (9%)9 (27%)

It is a relatively small protein, consisting of only 33 amino acids: 

Ala-Asp-Cys-Leu-Ala-His-Leu-Lys-Leu-Cys-Lys-Lys-Asn-Asn-Asp-Cys-Cys-Ser-Lys-Lys-Cys-Ser-Arg-Arg-Gly-Thr-Asn-Pro-Glu-Glu-Arg-Cys-Arg

Notably, two calcins produced by two closely related scorpions - vejocalcin from Vaejovis mexicanus and intrepicalcin from Vaejovis intrepidus - display a 97% similarity in their primary sequence, differing in only one amino acid at position 14 (Asn and Lys, respectively). Despite this marked similarity, vejocalcin exhibits a binding affinity to RyR1 that is 4.7-fold higher than that of intrepicalcin. [1]

Vejocalcin shows an arrangement of charged residues, in which most of the positively charged residues are segregated on one side of the molecule, whereas neutral and negatively charged residues are clustered on the opposite side. [1] This arrangement generates a discrete dipole moment (DM) and appears to be a prevalent feature across all toxins of the calcin family. [4] Interestingly, vejocalcin has the smallest charge segregation among peptides in the calcin family. However, comparisons among different calcins show that, for each peptide, there appears to be no correlation between DM, binding affinity and subconductance state attributes. [1] [5]

Maturation of vejocalcin involves post-translational modification of its tertiary structure. Specifically, three disulfide bonds are formed between cysteine residues in positions 3–17, 10–21, and 16–32. [1] These three disulfide bonds arrange themselves spatially to form a “disulfide through disulfide knot”, which is an evolutionary conserved structural motif known as the inhibitor cystine knot motif (ICK motif), thus defining the whole protein as a knottin. [6] This three-dimensional arrangement confers the protein remarkable stability and builds the structural core of its pharmacological active site. ICK motifs have also been shown to be characteristic of calcium channel blocking toxins produced by snails and spiders. [1]

Target

Though the exact target of vejocalcin on RyR1 remains unclear, it is thought that calcins bind to RyR1 at a binding site different from that of ryanodine, as the combination of calcins and ryanodine can have a cumulative effect on RyR1. [1] [5] Like most calcins, vejocalcin shows a fast association rate, as well as a reversible effect, due to free dissociation from the binding site. [1] Single channel experiments and modeling of the kinetics and gating of RyR1 during calcin exposure suggest that the RyR1 transits between closed and open states and a single calcin molecule binds to the channel when the channel is in the open state. [1] It is hypothesized that globular calcins, such as vejocalcin, can affect RyR1 channels by entering the cytosolic opening and accessing the binding site in the core of the channel. [1] The precise mechanism by which calcins bind to their target, however, remains controversial. [5]

Mode of action

Using single channel electrophysiological recordings, it was found that RyR1 channels exposed to vejocalcin move from an open state to a subconductance open state, with the latter conducting approximately 60% of the full-conductance level. [1] [6] Evidence from [3H]ryanodine binding assays shows that vejocalcin is able to enhance [3H]ryanodine binding to RyR1. This effect of vejocalcin is dose-dependent and happens at all Ca2+ levels, with an apparent dissociation constant Kd= 3.7 ± 0.4 nM. [1] Mechanistically, vejocalcin is thought to promote this action by increasing the “openness” of the channel in a long-lasting, reversible and transient manner. [1]

Noteworthy, vejocalcin triggers dose-dependent Ca2+ release from skeletal sarcoplasmic vesicles. High concentrations of vejocalcin drive incomplete, submaximal depletion of Ca2+ load through the process of calcium-induced calcium release (CICR) from intracellular Ca2+ stores. [1] These functional effects are also characteristic of other calcins as detected in structure–function relationship assays. [1]

Toxicity

While the effects of vejocalcin have not yet been studied, in vivo toxicity testing of hemicalcin has shown that the peptide induces neurotoxic symptoms in mice, followed by death. [7] The comparable activity of vejocalcin and hemicalcin on RyR1 suggests a similar toxicity of vejocalcin. [6] However, given the high variability in RyR-affinity between various calcins, the LD50 may vary significantly. [7] [8]

Therapeutic use

Despite their highly ionized nature, calcins are able to penetrate cell membranes with high efficiency. [9] Thus, they act as cell-penetrating peptides (CPPs) and can transport large, membrane-impermeable cargos across the plasma membrane directly into the cell. [10] [11] This property of calcins, combined with their high-affinity and specificity to RyRs, may have positive implications for intracellular drug delivery, particularly for the treatment of RyR channelopathies. [12]

Related Research Articles

<span class="mw-page-title-main">Slotoxin</span> Chemical compound

Slotoxin is a peptide from Centruroides noxius Hoffmann scorpion venom. It belongs to the short scorpion toxin superfamily.

<span class="mw-page-title-main">Scyllatoxin</span> Scorpion toxin

Scyllatoxin (also leiurotoxin I) is a toxin, from the scorpion Leiurus quinquestriatus hebraeus, which blocks small-conductance Ca2+-activated K+ channels. It is named after Scylla, a sea monster from Greek mythology. Charybdotoxin is also found in the venom from the same species of scorpion, and is named after the sea monster Charybdis. In Greek mythology, Scylla and Charybdis lived on rocks on opposing sides of a narrow strait of water.

<span class="mw-page-title-main">Margatoxin</span>

Margatoxin (MgTX) is a peptide that selectively inhibits Kv1.3 voltage-dependent potassium channels. It is found in the venom of Centruroides margaritatus, also known as the Central American Bark Scorpion. Margatoxin was first discovered in 1993. It was purified from scorpion venom and its amino acid sequence was determined.

<span class="mw-page-title-main">Grammotoxin</span>

Grammotoxin is a toxin in the venom of the tarantula Grammostola spatulata. It is a protein toxin that inhibits P-, Q- and N-type voltage-gated calcium channels in neurons. Grammotoxin is also known as omega-grammotoxin SIA.

The formyl peptide receptors (FPR) belong to a class of G protein-coupled receptors involved in chemotaxis. In humans, there are three formyl peptide receptor isoforms, each encoded by a separate gene that are named FPR1, FPR2, and FPR3. These receptors were originally identified by their ability to bind N-formyl peptides such as N-formylmethionine produced by the degradation of either bacterial or host cells. Hence formyl peptide receptors are involved in mediating immune cell response to infection. These receptors may also act to suppress the immune system under certain conditions. The close phylogenetic relation of signaling in chemotaxis and olfaction was recently proved by detection formyl peptide receptor like proteins as a distinct family of vomeronasal organ chemosensors in mice.

<span class="mw-page-title-main">Maurocalcine</span> Protein

Maurocalcine (MCa) is a protein, 33 Amino acid residues in length, isolated from the venom of the scorpion Maurus palmatus, which belongs to the family Chactidae, first characterized in 2000. The toxin is present in such small amounts that it could not be isolated to analyze it, so a chemical synthesis of this toxin was performed by the solid-phase technique so it could be fully characterized. It shares 82% sequence identity with imperatoxin A (IpTx A), a scorpion toxin from the venom of Pandinus imperator. IpTx A acts by modifying the activity of the type 1 ryanodine receptor of skeletal muscle. RyR controls the intracellular Ca2+ permeability of various cell types and is central in the process of excitation–contraction of muscle tissues. The synthesized toxin, sMCa is active on RyR1 and it binds onto a site different from that of ryanodine itself.

Imperatoxin I (IpTx) is a peptide toxin derived from the venom of the African scorpion Pandinus imperator.

BmTx3 is a neurotoxin, which is a component of the venom of the scorpion Buthus Martensi Karsch. It blocks A-type potassium channels in the central nervous system and hERG-channels in the heart.

Discrepin (α-KTx15.6) is a peptide from the venom of the Venezuelan scorpion Tityus discrepans. It acts as a neurotoxin by irreversibly blocking A-type voltage-dependent K+-channels.

BeKm-1 is a toxin from the Central Asian scorpion Buthus eupeus. BeKm-1 acts by selectively inhibiting the human Ether-à-go-go Related Gene (hERG) channels, which are voltage gated potassium ion channels.

Hanatoxin is a toxin found in the venom of the Grammostola spatulata tarantula. The toxin is mostly known for inhibiting the activation of voltage-gated potassium channels, most specifically Kv4.2 and Kv2.1, by raising its activation threshold.

Ergtoxin is a toxin from the venom of the Mexican scorpion Centruroides noxius. This toxin targets hERG potassium channels.

<span class="mw-page-title-main">Hadrucalcin</span>

Hadrucalcin is a peptide toxin from the venom of the scorpion Hadrurus gertschi. Hadrucalcin modifies the Ryanodine receptor channels RyR1 and RyR2, found in the sarcoplasmic reticulum, to a long-lasting subconductance state, thus inducing the release of calcium from the sarcoplasmic reticulum.

CgNa is a peptide toxin isolated from the sea anemone Condylactis gigantea. It causes an increased action potential duration by slowing down the inactivation of tetrodotoxin-sensitive sodium channels.

Centruroides suffusus suffusus toxin II (CssII) is a scorpion β-toxin from the venom of the scorpion Centruroides suffusus suffusus. CssII primarily affects voltage-gated sodium channels by causing a hyperpolarizing shift of voltage dependence, a reduction in peak transient current, and the occurrence of resurgent currents.

LmαTX3 is an α-scorpion toxin from Lychas mucronatus. that inhibits fast inactivation of voltage gated sodium-channels (VGSCs).

Beta-mammal toxin Cn2, also known as Cn2 toxin, is a single chain β-scorpion neurotoxic peptide and the primary toxin in the venom of the Centruroides noxius Hoffmann scorpion. The toxin specifically targets mammalian Nav1.6 voltage-gated sodium channels (VGSC).

<span class="mw-page-title-main">Wasabi receptor toxin</span>

Wasabi receptor toxin (WaTx) is the active component of the venom of the Australian black rock scorpion Urodacus manicatus. WaTx targets TRPA1, also known as the wasabi receptor or irritant receptor. WaTx is a cell-penetrating toxin that stabilizes the TRPA1 channel open state while reducing its Ca2+-permeability, thereby eliciting pain and pain hypersensitivity without the neurogenic inflammation that typically occurs in other animal toxins.

Intrepicalcin (ViCaTx1) is a short peptide toxin found in the venom of scorpion Vaejovis intrepidus. It is one of a group of short, basic peptides called calcins, which bind to ryanodine receptors (RyRs) and thereby trigger calcium release from the sarcoplasmic reticulum.

LmαTX5 is an α-scorpion toxin which inhibits the fast inactivation of voltage-gated sodium channels. It has been identified through transcriptome analysis of the venom gland of Lychas mucronatus, also known as the Chinese swimming scorpion – a scorpion species which is widely distributed in Southeast Asia.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Xiao, Liang; Gurrola, Georgina B.; Zhang, Jing; Martin, Mario San; Zamudio, Fernando Z.; Possani, Lourival D.; Valdivia, Héctor H. (2014-01-28). "Structure-Function Relationship of Calcins, a Family of High-Affinity Peptide Ligands of Ryanodine Receptors". Biophysical Journal. Cell. 106 (2): 106–13. Bibcode:2014BpJ...106..106X. doi:10.1016/j.bpj.2013.11.656. PMC   3907369 . PMID   24411242.
  2. Fet, V., Sissom, W. D., Lowe, G., & Braunwalder, M. E. (2000). Catalog of the scorpions of the world (1758-1998). New York Entomological Society.
  3. Koch, C.L. (1836) Die Arachniden. Nürnberg: C. H. Zeh'sche Buchhandlung, 3 (1–5), 17–104.
  4. Vargas-Jaimes, L., Xiao, L., Zhang, J., Possani, L. D., Valdivia, H. H., & Quintero-Hernández, V. (2017). Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(4), 936-946. PMID   28159581 PMCID: PMC5329131 DOI: 10.1016/j.bbagen.2017.01.032
  5. 1 2 3 Ramos-Franco, J., & Fill, M. (2016). Approaching ryanodine receptor therapeutics from the calcin angle. The Journal of general physiology, 147(5), 369-373. PMID   27114611 PMCID: PMC4845691 DOI: 10.1085/jgp.201611599
  6. 1 2 3 “Vejocalcin.” UniProt, 3 July 2019, www.uniprot.org/uniprot/P0DPT1.
  7. 1 2 Shahbazzadeh, D., Srairi-Abid, N., Feng, W., Ram, N., Borchani, L., Ronjat, M., … El Ayeb, M. (2007). Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. The Biochemical journal, 404(1), 89–96. PMID   17291197 PMCID: PMC1868827 DOI: 10.1042/BJ20061404
  8. Fajloun, Z., Kharrat, R., Chen, L., Lecomte, C., Di Luccio, E., Bichet, D., ... & De Waard, M. (2000). Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ryanodine receptors. FEBS letters, 469(2-3), 179-185.Chicago PMID   10713267 DOI: 10.1016/s0014-5793(00)01239-4
  9. Schwartz, E.F., E.M. Capes, E. Diego-García, F.Z. Zamudio, O. Fuentes, L.D. Possani, and H.H. Valdivia. 2009. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 157:392–403. PMID   19389159 PMCID: PMC2707986 DOI: 10.1111/j.1476-5381.2009.00147.x
  10. Altafaj, X., W. Cheng, E. Estève, J. Urbani, D. Grunwald, J.M. Sabatier, R. Coronado, M. De Waard, and M. Ronjat. 2005. Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor. J. Biol. Chem. 280:4013–4016. hPMID 15591063 PMCID: PMC2712624 DOI: 10.1074/jbc.C400433200
  11. Boisseau, S., K. Mabrouk, N. Ram, N. Garmy, V. Collin, A. Tadmouri, M. Mikati, J.M. Sabatier, M. Ronjat, J. Fantini, and M. De Waard. 2006. Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor. Biochim. Biophys. Acta. 1758:308–319. PMID   16545341 DOI: 10.1016/j.bbamem.2006.02.007
  12. Benkusky, N.A., E.F. Farrell, and H.H. Valdivia. 2004. Ryanodine receptor channelopathies. Biochem. Biophys. Res. Commun. 322:1280–1285. PMID   15336975 DOI: 10.1016/j.bbrc.2004.08.033