Vibration welding of thermoplastics

Last updated

Vibration welding (also known as linear or friction welding) refers to a process in which two workpieces are brought in contact under pressure, and a reciprocating motion (vibration) is applied along the common interface in order to generate heat. The resulting heat melts the workpieces, and they become welded when the vibration stops and the interface cools. Most machinery operates at 120 Hz, although equipment is available that runs between 100–240 Hz. [1] Vibration can be achieved either through linear vibration welding, which uses a one dimensional back and forth motion, or orbital vibration welding which moves the pieces in small orbits relative to each other. Linear vibration welding is more common due to simpler and relatively cheaper machinery required.

Contents

Vibration welding is often used for larger applications where the parts to be joined have relatively flat seams, although the process can accommodate some out of plane curvature. Recently, the automotive industry has made extensive use of the process to produce parts like manifolds and lighting assemblies whose complex geometries prevent single component molding processes.

Advantages and disadvantages

[2] Vibration welding has numerous advantages over other conventional plastic welding processes. Since the heat is created at an interface, the molten polymers are not exposed to open air, preventing oxidation and contamination of the weld during the process. No filler material is required, and when welding components of the same material the joint can be expected to be just as strong as the bulk material. Heating is localized to the interface, decreasing the chances of material degradation seen with other processes which require a heat source well above the melt temperature of the material. The process itself is cost effective, with no consumables and short cycle times. [1] Vibration welding produces virtually no smoke or fume, requires little surface preparation, and works well for a multitude of applications, making it well suited to mass production environments.

Vibration welding does have its drawbacks, however. The process does not lend itself well to low modulus thermoplastics or to joints between plastics with relatively high differences in melting temperatures. Vibration welding requires part specific fixturing and joint designs, and the part will be exposed to rigorous vibration during the welding cycle which may damage sensitive or miniature components. The finished weld will be surrounded by a significant amount of flash, which must be removed if appearance is an issue. Alternatively, joint geometries which hide the excess flash can be used. Lastly, the process is not well suited to welding of anything other than relatively flat joints.

Vibration welding process

The vibration welding process consists of four steps: solid friction, transient flow, steady state flow, and solidification.[ citation needed ]

Solid friction

In this first stage, vibration is commenced between two cold parts pressed together at a constant pressure. The frictional energy causes the polymers to heat. In this stage there is no weld penetration as melting has not yet occurred.

Transient flow

In the transient flow step the polymer's surface begins to melt. The melt layer thickness quickly grows, causing the frictional forces to decrease. This decrease in friction decreases the heat input to the system, and a lateral flow of molten material begins to occur.

Steady state flow

In this phase the melting rate of the material matches the flow of material extruded at the lateral surfaces. The material flow and thickness of the melt layer become constant. This is the step that determines the quality of the weld. This step is maintained until the desired ‘melt down’ thickness (thickness of the molten material) is achieved. At that time the vibration is stopped and the weld is allowed to cool.

Solidification

During solidification the vibration is stopped, while pressure is maintained on the workpieces until no more molten material remains. Once cooled to room temperature, the joint should have near the strength of the bulk material. Pressure is only relieved once the joint reaches an acceptable strength.

Equipment

A vibration welding machine is essentially a vertical machine press in which one side has been modified to vibrate.  The main components are the vibrating assembly, a lifting table, and a tooling fixture.

Vibrating assembly

The vibrating assembly is a moving element driven either by hydraulics or more commonly, electromagnets. In the electromagnetic version, the heart of this assembly is a tuned spring-mass system powered by electrical coils acting on oppositely charged lamination stacks. The frequency of the electrical charges is matched to the mechanical frequency of the system. Although the amplitude can be adjusted on the machine the frequency can only be changed by changing the mass of the vibrating assembly. The moving portion of the tooling is affixed to the vibrating assembly.

Lifting table

The lifting table is a hydraulic assembly attached to the fixed portion of the tooling. The lifting table brings the workpieces together, and applies pressure between the moving and stationary portions of the tooling. [3]

Tooling

Tooling refers to the fixtures which are attached to the vibrating assembly and lifting table that hold the work pieces in place. Tooling is application specific, and must allow for workpieces to be quickly switched out after every welding cycle. It is imperative that the tooling matches the workpieces closely enough to prevent any relative motion between the tooling and the workpieces, as this would reduce the amplitude of the weld and lower heat input as well as dimensional tolerances.

Process variables

The vibration welding process has five main variables: frequency, amplitude, pressure, time, and depth.

Frequency

Frequency refers to how many times per second a vibration cycle is completed. Most machinery runs at 120 Hz, although machinery is available that runs from 100–240 Hz. Frequency is dependent on the mass of the vibrating assembly, and as such can only be changed by switching out components of the assembly.

Amplitude

Amplitude refers to the distance traveled during each vibratory cycle. Higher amplitudes tend to be used with lower frequencies, and vice versa. Higher amplitudes increase heat input at the cost of cleanliness and dimensional tolerances, making them more useful for larger parts. Lower amplitudes range from 0.7-1.8mm, while higher amplitudes describe cycles that cover 2-4mm.

Pressure

Pressure is the primary controller of melt layer thickness, and must be kept within an optimal range in order to produce quality joints. Although pressure can vary between 0.5-20MPa across different materials and geometries, the tolerances for a given application are quite tight. Too little pressure will prevent sufficient heat generation, while too much pressure can cause all of the molten material to squeeze out of the joint. Both scenarios will result in a weak weld. Pressure is controlled by the lifting table.

Time

The length of time that vibration is applied to the workpiece is another key factor. Time is directly proportional to heat generation and material loss to flash. Processes can be either time or depth controlled, with most modern processes being depth controlled. A depth controlled process will have a variable time, and vice versa.

Depth

An illustration of a joint with incorporated flash trap Flash trap.png
An illustration of a joint with incorporated flash trap

Depth refers to the distance traveled by the workpieces after vibration is started. Sometimes referred to as displacement, it is directly related to the amount of material loss to flash. In general depth should be kept close to or above the thickness of the melt layer at the beginning of the steady state stage. After this value, more depth only results in loss of material without an accompanying rise in joint strength.

Weld design

Weld design for vibration welding must include a relatively large flat surface, although some out of plane curvature can be accommodated for. The most common type of joint is a butt joint, where two flat pieces with the same cross section are welded together. Variations on this joint can include u-flanges, tongue and groove joints, and even double tongue and groove joints. [2] When appearances are important, flash traps can be used. Flash traps refer to  hollow areas in the cross section next to the weld area that collect the flash and hide it from view.

Related Research Articles

<span class="mw-page-title-main">Spot welding</span> Process in which contacting metal surfaces are joined by heat from resistance to electric current

Spot welding is a type of electric resistance welding used to weld various sheet metal products, through a process in which contacting metal surface points are joined by the heat obtained from resistance to electric current.

Induction welding is a form of welding that uses electromagnetic induction to heat the workpiece. The welding apparatus contains an induction coil that is energised with a radio-frequency electric current. This generates a high-frequency electromagnetic field that acts on either an electrically conductive or a ferromagnetic workpiece. In an electrically conductive workpiece, the main heating effect is resistive heating, which is due to induced currents called eddy currents. In a ferromagnetic workpiece, the heating is caused mainly by hysteresis, as the electromagnetic field repeatedly distorts the magnetic domains of the ferromagnetic material. In practice, most materials undergo a combination of these two effects.

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an induction coil that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Ultrasonic welding</span> Welding process

Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When used to join metals, the temperature stays well below the melting point of the involved materials, preventing any unwanted properties which may arise from high temperature exposure of the metal.

<span class="mw-page-title-main">Plastic welding</span> Welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

Friction welding (FWR) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Because no melting occurs, friction welding is not a fusion welding process, but a solid-state welding technique more like forge welding. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

<span class="mw-page-title-main">Plasma arc welding</span>

Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.

<span class="mw-page-title-main">Friction stir welding</span> Using a spinning tool to mix metal workpieces together at the joint, without melting them

Friction stir welding (FSW) is a solid-state joining process that uses a non-consumable tool to join two facing workpieces without melting the workpiece material. Heat is generated by friction between the rotating tool and the workpiece material, which leads to a softened region near the FSW tool. While the tool is traversed along the joint line, it mechanically intermixes the two pieces of metal, and forges the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or dough. It is primarily used on wrought or extruded aluminium and particularly for structures which need very high weld strength. FSW is capable of joining aluminium alloys, copper alloys, titanium alloys, mild steel, stainless steel and magnesium alloys. More recently, it was successfully used in welding of polymers. In addition, joining of dissimilar metals, such as aluminium to magnesium alloys, has been recently achieved by FSW. Application of FSW can be found in modern shipbuilding, trains, and aerospace applications.

Electric resistance welding (ERW) is a welding process where metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electrical current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electrical current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.

<span class="mw-page-title-main">Heat sealer</span>

A heat sealer is a machine used to seal products, packaging, and other thermoplastic materials using heat. This can be with uniform thermoplastic monolayers or with materials having several layers, at least one being thermoplastic. Heat sealing can join two similar materials together or can join dissimilar materials, one of which has a thermoplastic layer.

Electrogas welding (EGW) is a continuous vertical position arc welding process developed in 1961, in which an arc is struck between a consumable electrode and the workpiece. A shielding gas is sometimes used, but pressure is not applied. A major difference between EGW and its cousin electroslag welding is that the arc in EGW is not extinguished, instead remains struck throughout the welding process. It is used to make square-groove welds for butt and t-joints, especially in the shipbuilding industry and in the construction of storage tanks.

<span class="mw-page-title-main">Plastic extrusion</span> Melted plastic manufacturing process

Plastics extrusion is a high-volume manufacturing process in which raw plastic is melted and formed into a continuous profile. Extrusion produces items such as pipe/tubing, weatherstripping, fencing, deck railings, window frames, plastic films and sheeting, thermoplastic coatings, and wire insulation.

Hot plate welding, also called heated tool welding, is a thermal welding technique for joining thermoplastics. A heated tool is placed against or near the two surfaces to be joined in order to melt them. Then, the heat source is removed, and the surfaces are brought together under pressure. Hot plate welding has relatively long cycle times, ranging from 10 seconds to minutes, compared to vibration or ultrasonic welding. However, its simplicity and ability to produce strong joints in almost all thermoplastics make it widely used in mass production and for large structures, like large-diameter plastic pipes. Different inspection techniques are implemented in order to identify various discontinuities or cracks.

Laser welding of polymers is a set of methods used to join polymeric components through the use of a laser. It can be performed using CO2 lasers, Nd:YAG lasers, Diode lasers and Fiber lasers.

Spin welding is a form of friction welding used to join thermoplastic parts. The parts to be welded must be round, and in plane with each other. Like all other welding methods this process utilizes heat, time, and pressure to create a weld joint. Heat is generated via internal friction generated between the two parts when rotating and subjected to a load normal to the weld joint. This frictional heat causes the plastic to melt and a bond to be created.

Extrusion welding is one of the processes used to weld thermoplastics and composites, developed in the 1960s as an evolution of hot gas welding. It can be a manual or automated process.

Ultrasonic welding is a method of joining thermoplastic components by heating and subsequent melting of surfaces in contact. Mechanical vibration with frequency between 10 and 70 kHz and amplitude of 10 to 250 μm is applied to joining parts. After ultrasonic energy is turned off, the parts remain in contact under pressure for some time while the melt layer cools down creating a weld.

Advanced thermoplastic composites (ACM) have a high strength fibres held together by a thermoplastic matrix. Advanced thermoplastic composites are becoming more widely used in the aerospace, marine, automotive and energy industry. This is due to the decreasing cost and superior strength to weight ratios, over metallic parts. Advance thermoplastic composite have excellent damage tolerance, corrosion resistant, high fracture toughness, high impact resistance, good fatigue resistance, low storage cost, and infinite shelf life. Thermoplastic composites also have the ability to be formed and reformed, repaired and fusion welded.

Radio-frequency welding, also known as dielectric welding and high-frequency welding, is a plastic welding process that utilizes high-frequency electric fields to induce heating and melting of thermoplastic base materials. The electric field is applied by a pair of electrodes after the parts being joined are clamped together. The clamping force is maintained until the joint solidifies. Advantages of this process are fast cycle times, automation, repeatability, and good weld appearance. Only plastics which have dipoles can be heated using radio waves and therefore not all plastics are able to be welded using this process. Also, this process is not well suited for thick or overly complex joints. The most common use of this process is lap joints or seals on thin plastic sheets or parts.

Implant induction welding is a joining method used in plastic manufacturing. The welding process uses an induction coil to excite and heat electromagnetically susceptible material at the joint interface and melt the thermoplastic. The susceptible material can be contained in a gasket placed between the welding surface, or within the actual components of a composite material. Its usage is common for large, unusually shaped, or delicate parts that would be difficult to weld through other methods.

References

  1. 1 2 Stokes, V.K. (1988). "Vibration Welding of Thermoplastics, Part I". Polymer Engineering and Science. 28.
  2. 1 2 "Vibration Welding Guide" (PDF). DSM.
  3. Amanat, Negin (2010). "Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices". Medical Engineering and Physics. 32 (7): 690–699. doi:10.1016/j.medengphy.2010.04.011. PMID   20570545.